Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313648186> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4313648186 endingPage "1624" @default.
- W4313648186 startingPage "1615" @default.
- W4313648186 abstract "Cervical cancer causes the abnormal growth of the cells at the cervix region of the woman’s uterus. It is the second most common type of cancer after the breast cancer seen in women. Detection of cervical cancer at the early stage is vital. Various screening methods like Pap smear, Colposcopy and HPV testing are carried out for the detection of cervical cancer. The possible screening techniques to diagnose cervical cancer include the visual inspection of the cervix (VIA), Pap smear examination (cytology), Colposcopy, Biopsy and HPV-DNA detection. All these techniques need the involvement of an expert doctor and/or pathologist. Also, a cancer diagnosis is a subjective process where the experience and training of pathologists are significant factors. Intelligent and automated screening systems will be helpful in such scenarios. This paper presents the methodology for cervical cancer prediction based on pap smear images. Pre-trained deep neural network models are used for feature extraction and different machine-learning (ML) models are trained on extracted features. In the proposed methodology, four pre-trained models such as Alexnet, Resnet-18, Resnet-50 and Googlenet are fine-tuned for feature extraction followed by the different ML algorithms. Among these simple logistic regression, the algorithms have performed best with the highest accuracy of 95.14% with the Alexnet pre-trained model." @default.
- W4313648186 created "2023-01-07" @default.
- W4313648186 creator A5007434165 @default.
- W4313648186 creator A5027185435 @default.
- W4313648186 creator A5065619234 @default.
- W4313648186 creator A5082037255 @default.
- W4313648186 date "2023-01-05" @default.
- W4313648186 modified "2023-10-17" @default.
- W4313648186 title "Pap smear-based cervical cancer detection using hybrid deep learning and performance evaluation" @default.
- W4313648186 cites W1999606977 @default.
- W4313648186 cites W2081399576 @default.
- W4313648186 cites W2097117768 @default.
- W4313648186 cites W2194775991 @default.
- W4313648186 cites W2566110348 @default.
- W4313648186 cites W2599906331 @default.
- W4313648186 cites W2618530766 @default.
- W4313648186 cites W2808473860 @default.
- W4313648186 cites W2892046320 @default.
- W4313648186 cites W2919115771 @default.
- W4313648186 cites W2991895141 @default.
- W4313648186 cites W2999688610 @default.
- W4313648186 cites W3007473623 @default.
- W4313648186 cites W3024740627 @default.
- W4313648186 cites W3102737931 @default.
- W4313648186 cites W3130039502 @default.
- W4313648186 cites W3177549357 @default.
- W4313648186 cites W3193878501 @default.
- W4313648186 cites W4200300941 @default.
- W4313648186 cites W4205957799 @default.
- W4313648186 cites W4230900352 @default.
- W4313648186 doi "https://doi.org/10.1080/21681163.2022.2163704" @default.
- W4313648186 hasPublicationYear "2023" @default.
- W4313648186 type Work @default.
- W4313648186 citedByCount "2" @default.
- W4313648186 countsByYear W43136481862023 @default.
- W4313648186 crossrefType "journal-article" @default.
- W4313648186 hasAuthorship W4313648186A5007434165 @default.
- W4313648186 hasAuthorship W4313648186A5027185435 @default.
- W4313648186 hasAuthorship W4313648186A5065619234 @default.
- W4313648186 hasAuthorship W4313648186A5082037255 @default.
- W4313648186 hasConcept C121608353 @default.
- W4313648186 hasConcept C126322002 @default.
- W4313648186 hasConcept C151956035 @default.
- W4313648186 hasConcept C154945302 @default.
- W4313648186 hasConcept C2776117191 @default.
- W4313648186 hasConcept C2777740455 @default.
- W4313648186 hasConcept C2778220009 @default.
- W4313648186 hasConcept C41008148 @default.
- W4313648186 hasConcept C52622490 @default.
- W4313648186 hasConcept C71924100 @default.
- W4313648186 hasConceptScore W4313648186C121608353 @default.
- W4313648186 hasConceptScore W4313648186C126322002 @default.
- W4313648186 hasConceptScore W4313648186C151956035 @default.
- W4313648186 hasConceptScore W4313648186C154945302 @default.
- W4313648186 hasConceptScore W4313648186C2776117191 @default.
- W4313648186 hasConceptScore W4313648186C2777740455 @default.
- W4313648186 hasConceptScore W4313648186C2778220009 @default.
- W4313648186 hasConceptScore W4313648186C41008148 @default.
- W4313648186 hasConceptScore W4313648186C52622490 @default.
- W4313648186 hasConceptScore W4313648186C71924100 @default.
- W4313648186 hasFunder F4320320719 @default.
- W4313648186 hasIssue "5" @default.
- W4313648186 hasLocation W43136481861 @default.
- W4313648186 hasOpenAccess W4313648186 @default.
- W4313648186 hasPrimaryLocation W43136481861 @default.
- W4313648186 hasRelatedWork W2025105594 @default.
- W4313648186 hasRelatedWork W2184317297 @default.
- W4313648186 hasRelatedWork W2398876125 @default.
- W4313648186 hasRelatedWork W2418059156 @default.
- W4313648186 hasRelatedWork W2514884906 @default.
- W4313648186 hasRelatedWork W2888045684 @default.
- W4313648186 hasRelatedWork W2974422904 @default.
- W4313648186 hasRelatedWork W3011191626 @default.
- W4313648186 hasRelatedWork W3213770797 @default.
- W4313648186 hasRelatedWork W2186662502 @default.
- W4313648186 hasVolume "11" @default.
- W4313648186 isParatext "false" @default.
- W4313648186 isRetracted "false" @default.
- W4313648186 workType "article" @default.