Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313648437> ?p ?o ?g. }
- W4313648437 endingPage "1029" @default.
- W4313648437 startingPage "1029" @default.
- W4313648437 abstract "Captured low-light images typically suffer from low brightness, low contrast, and blurred details due to the scattering and absorption of light and limited lighting. To deal with these issues, we propose a self-calibrating depth network with soft-edge reconstruction for low-light image enhancement. Concretely, we first employ the soft edge reconstruction module to reconstruct the soft edge of the input image and extract the texture and detail information of the image. Afterward, we explore the convergence properties of each input via the self-calibration module to significantly improve the computational effectiveness of the method and gradually correct the inputs at each subsequent level. Finally, the low-light image is iteratively enhanced by an iterative light enhancement curve to obtain a high-quality image. Extensive experiments demonstrate that our SCDNet visually enhances the brightness and contrast, restores the actual color, and makes the image more in line with the characteristics of the human eye vision system. Meanwhile, our SCDNet outperforms the compared methods in some qualitative and quantitative metrics." @default.
- W4313648437 created "2023-01-07" @default.
- W4313648437 creator A5012921349 @default.
- W4313648437 creator A5018477186 @default.
- W4313648437 creator A5021875517 @default.
- W4313648437 creator A5032857124 @default.
- W4313648437 creator A5058188767 @default.
- W4313648437 creator A5082538880 @default.
- W4313648437 date "2023-01-05" @default.
- W4313648437 modified "2023-10-14" @default.
- W4313648437 title "SCDNet: Self-Calibrating Depth Network with Soft-Edge Reconstruction for Low-Light Image Enhancement" @default.
- W4313648437 cites W1580436348 @default.
- W4313648437 cites W1987444808 @default.
- W4313648437 cites W2254039850 @default.
- W4313648437 cites W2412926690 @default.
- W4313648437 cites W2564997479 @default.
- W4313648437 cites W2566376500 @default.
- W4313648437 cites W2765879899 @default.
- W4313648437 cites W2780108394 @default.
- W4313648437 cites W2783399029 @default.
- W4313648437 cites W2783573276 @default.
- W4313648437 cites W2791071401 @default.
- W4313648437 cites W2791710889 @default.
- W4313648437 cites W2799396445 @default.
- W4313648437 cites W2893639310 @default.
- W4313648437 cites W2897662688 @default.
- W4313648437 cites W2908390308 @default.
- W4313648437 cites W2935842779 @default.
- W4313648437 cites W2944122461 @default.
- W4313648437 cites W2970680552 @default.
- W4313648437 cites W3003838261 @default.
- W4313648437 cites W3010638262 @default.
- W4313648437 cites W3015044426 @default.
- W4313648437 cites W3034347506 @default.
- W4313648437 cites W3035731588 @default.
- W4313648437 cites W3089994118 @default.
- W4313648437 cites W3094046575 @default.
- W4313648437 cites W3105273993 @default.
- W4313648437 cites W3117326213 @default.
- W4313648437 cites W3163754133 @default.
- W4313648437 cites W3181748506 @default.
- W4313648437 cites W3200204385 @default.
- W4313648437 cites W3207478457 @default.
- W4313648437 cites W4200606162 @default.
- W4313648437 cites W4221161982 @default.
- W4313648437 cites W4226197550 @default.
- W4313648437 cites W4282914989 @default.
- W4313648437 cites W4293387332 @default.
- W4313648437 cites W4294871818 @default.
- W4313648437 cites W4304183559 @default.
- W4313648437 cites W4307548671 @default.
- W4313648437 cites W4308118670 @default.
- W4313648437 cites W4308119982 @default.
- W4313648437 cites W4312249431 @default.
- W4313648437 cites W4313026854 @default.
- W4313648437 doi "https://doi.org/10.3390/su15021029" @default.
- W4313648437 hasPublicationYear "2023" @default.
- W4313648437 type Work @default.
- W4313648437 citedByCount "0" @default.
- W4313648437 crossrefType "journal-article" @default.
- W4313648437 hasAuthorship W4313648437A5012921349 @default.
- W4313648437 hasAuthorship W4313648437A5018477186 @default.
- W4313648437 hasAuthorship W4313648437A5021875517 @default.
- W4313648437 hasAuthorship W4313648437A5032857124 @default.
- W4313648437 hasAuthorship W4313648437A5058188767 @default.
- W4313648437 hasAuthorship W4313648437A5082538880 @default.
- W4313648437 hasBestOaLocation W43136484371 @default.
- W4313648437 hasConcept C105795698 @default.
- W4313648437 hasConcept C115961682 @default.
- W4313648437 hasConcept C120665830 @default.
- W4313648437 hasConcept C121332964 @default.
- W4313648437 hasConcept C125245961 @default.
- W4313648437 hasConcept C141379421 @default.
- W4313648437 hasConcept C154945302 @default.
- W4313648437 hasConcept C162307627 @default.
- W4313648437 hasConcept C165838908 @default.
- W4313648437 hasConcept C2776502983 @default.
- W4313648437 hasConcept C31972630 @default.
- W4313648437 hasConcept C33923547 @default.
- W4313648437 hasConcept C41008148 @default.
- W4313648437 hasConcept C55020928 @default.
- W4313648437 hasConceptScore W4313648437C105795698 @default.
- W4313648437 hasConceptScore W4313648437C115961682 @default.
- W4313648437 hasConceptScore W4313648437C120665830 @default.
- W4313648437 hasConceptScore W4313648437C121332964 @default.
- W4313648437 hasConceptScore W4313648437C125245961 @default.
- W4313648437 hasConceptScore W4313648437C141379421 @default.
- W4313648437 hasConceptScore W4313648437C154945302 @default.
- W4313648437 hasConceptScore W4313648437C162307627 @default.
- W4313648437 hasConceptScore W4313648437C165838908 @default.
- W4313648437 hasConceptScore W4313648437C2776502983 @default.
- W4313648437 hasConceptScore W4313648437C31972630 @default.
- W4313648437 hasConceptScore W4313648437C33923547 @default.
- W4313648437 hasConceptScore W4313648437C41008148 @default.
- W4313648437 hasConceptScore W4313648437C55020928 @default.
- W4313648437 hasIssue "2" @default.
- W4313648437 hasLocation W43136484371 @default.
- W4313648437 hasOpenAccess W4313648437 @default.