Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313648836> ?p ?o ?g. }
- W4313648836 endingPage "651" @default.
- W4313648836 startingPage "651" @default.
- W4313648836 abstract "Digitization in healthcare systems, with the wid adoption of Electronic Health Records, connected medical devices, software and systems providing efficient healthcare service delivery and management. On the other hand, the use of these systems has significantly increased cyber threats in the healthcare sector. Vulnerabilities in the existing and legacy systems are one of the key causes for the threats and related risks. Understanding and addressing the threats from the connected medical devices and other parts of the ICT health infrastructure are of paramount importance for ensuring security within the overall healthcare ecosystem. Threat and vulnerability analysis provides an effective way to lower the impact of risks relating to the existing vulnerabilities. However, this is a challenging task due to the availability of massive data which makes it difficult to identify potential patterns of security issues. This paper contributes towards an effective threats and vulnerabilities analysis by adopting Machine Learning models, such as the BERT neural language model and XGBoost, to extract updated information from the Natural Language documents largely available on the web, evaluating at the same time the level of the identified threats and vulnerabilities that can impact on the healthcare system, providing the required information for the most appropriate management of the risk. Experiments were performed based on CS news extracted from the Hacker News website and on Common Vulnerabilities and Exposures (CVE) vulnerability reports. The results demonstrate the effectiveness of the proposed approach, which provides a realistic manner to assess the threats and vulnerabilities from Natural Language texts, allowing adopting it in real-world Healthcare ecosystems." @default.
- W4313648836 created "2023-01-07" @default.
- W4313648836 creator A5004816763 @default.
- W4313648836 creator A5011195262 @default.
- W4313648836 creator A5028272442 @default.
- W4313648836 creator A5034161989 @default.
- W4313648836 creator A5058734055 @default.
- W4313648836 date "2023-01-06" @default.
- W4313648836 modified "2023-10-10" @default.
- W4313648836 title "A Machine Learning Approach for the NLP-Based Analysis of Cyber Threats and Vulnerabilities of the Healthcare Ecosystem" @default.
- W4313648836 cites W1500693574 @default.
- W4313648836 cites W2086370305 @default.
- W4313648836 cites W2101746535 @default.
- W4313648836 cites W2143472559 @default.
- W4313648836 cites W2290604269 @default.
- W4313648836 cites W2493916176 @default.
- W4313648836 cites W2800111293 @default.
- W4313648836 cites W2805641541 @default.
- W4313648836 cites W2911489562 @default.
- W4313648836 cites W2913923423 @default.
- W4313648836 cites W2929376427 @default.
- W4313648836 cites W2958860733 @default.
- W4313648836 cites W3004288456 @default.
- W4313648836 cites W3013136547 @default.
- W4313648836 cites W3040493431 @default.
- W4313648836 cites W3097229427 @default.
- W4313648836 cites W3102476541 @default.
- W4313648836 cites W3104128335 @default.
- W4313648836 cites W3108827348 @default.
- W4313648836 cites W3133897466 @default.
- W4313648836 cites W3157029757 @default.
- W4313648836 cites W3165688004 @default.
- W4313648836 cites W3180238884 @default.
- W4313648836 cites W3183213897 @default.
- W4313648836 cites W3191656082 @default.
- W4313648836 cites W3195446130 @default.
- W4313648836 cites W3209329320 @default.
- W4313648836 cites W3214840804 @default.
- W4313648836 cites W4213300563 @default.
- W4313648836 cites W4281709424 @default.
- W4313648836 cites W4285407531 @default.
- W4313648836 cites W4288369688 @default.
- W4313648836 cites W4292748792 @default.
- W4313648836 cites W4312420419 @default.
- W4313648836 cites W2563903734 @default.
- W4313648836 doi "https://doi.org/10.3390/s23020651" @default.
- W4313648836 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36679446" @default.
- W4313648836 hasPublicationYear "2023" @default.
- W4313648836 type Work @default.
- W4313648836 citedByCount "7" @default.
- W4313648836 countsByYear W43136488362023 @default.
- W4313648836 crossrefType "journal-article" @default.
- W4313648836 hasAuthorship W4313648836A5004816763 @default.
- W4313648836 hasAuthorship W4313648836A5011195262 @default.
- W4313648836 hasAuthorship W4313648836A5028272442 @default.
- W4313648836 hasAuthorship W4313648836A5034161989 @default.
- W4313648836 hasAuthorship W4313648836A5058734055 @default.
- W4313648836 hasBestOaLocation W43136488361 @default.
- W4313648836 hasConcept C118552586 @default.
- W4313648836 hasConcept C160735492 @default.
- W4313648836 hasConcept C162324750 @default.
- W4313648836 hasConcept C167063184 @default.
- W4313648836 hasConcept C2522767166 @default.
- W4313648836 hasConcept C27415008 @default.
- W4313648836 hasConcept C2779308522 @default.
- W4313648836 hasConcept C31972630 @default.
- W4313648836 hasConcept C38652104 @default.
- W4313648836 hasConcept C41008148 @default.
- W4313648836 hasConcept C50522688 @default.
- W4313648836 hasConcept C71924100 @default.
- W4313648836 hasConcept C86844869 @default.
- W4313648836 hasConcept C95713431 @default.
- W4313648836 hasConceptScore W4313648836C118552586 @default.
- W4313648836 hasConceptScore W4313648836C160735492 @default.
- W4313648836 hasConceptScore W4313648836C162324750 @default.
- W4313648836 hasConceptScore W4313648836C167063184 @default.
- W4313648836 hasConceptScore W4313648836C2522767166 @default.
- W4313648836 hasConceptScore W4313648836C27415008 @default.
- W4313648836 hasConceptScore W4313648836C2779308522 @default.
- W4313648836 hasConceptScore W4313648836C31972630 @default.
- W4313648836 hasConceptScore W4313648836C38652104 @default.
- W4313648836 hasConceptScore W4313648836C41008148 @default.
- W4313648836 hasConceptScore W4313648836C50522688 @default.
- W4313648836 hasConceptScore W4313648836C71924100 @default.
- W4313648836 hasConceptScore W4313648836C86844869 @default.
- W4313648836 hasConceptScore W4313648836C95713431 @default.
- W4313648836 hasFunder F4320320300 @default.
- W4313648836 hasIssue "2" @default.
- W4313648836 hasLocation W43136488361 @default.
- W4313648836 hasLocation W43136488362 @default.
- W4313648836 hasLocation W43136488363 @default.
- W4313648836 hasLocation W43136488364 @default.
- W4313648836 hasLocation W43136488365 @default.
- W4313648836 hasOpenAccess W4313648836 @default.
- W4313648836 hasPrimaryLocation W43136488361 @default.
- W4313648836 hasRelatedWork W1974343333 @default.
- W4313648836 hasRelatedWork W2002568488 @default.
- W4313648836 hasRelatedWork W2020865170 @default.