Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313649303> ?p ?o ?g. }
- W4313649303 abstract "Abstract Automatic COVID-19 detection using chest X-ray (CXR) can play a vital part in large-scale screening and epidemic control. However, the radiographic features of CXR have different composite appearances, for instance, diffuse reticular-nodular opacities and widespread ground-glass opacities. This makes the automatic recognition of COVID-19 using CXR imaging a challenging task. To overcome this issue, we propose a densely attention mechanism-based network (DAM-Net) for COVID-19 detection in CXR. DAM-Net adaptively extracts spatial features of COVID-19 from the infected regions with various appearances and scales. Our proposed DAM-Net is composed of dense layers, channel attention layers, adaptive downsampling layer, and label smoothing regularization loss function. Dense layers extract the spatial features and the channel attention approach adaptively builds up the weights of major feature channels and suppresses the redundant feature representations. We use the cross-entropy loss function based on label smoothing to limit the effect of interclass similarity upon feature representations. The network is trained and tested on the largest publicly available dataset, i.e., COVIDx, consisting of 17,342 CXRs. Experimental results demonstrate that the proposed approach obtains state-of-the-art results for COVID-19 classification with an accuracy of 97.22%, a sensitivity of 96.87%, a specificity of 99.12%, and a precision of 95.54%." @default.
- W4313649303 created "2023-01-07" @default.
- W4313649303 creator A5003627780 @default.
- W4313649303 creator A5047197696 @default.
- W4313649303 creator A5065073249 @default.
- W4313649303 creator A5067307648 @default.
- W4313649303 date "2023-01-06" @default.
- W4313649303 modified "2023-10-17" @default.
- W4313649303 title "Densely attention mechanism based network for COVID-19 detection in chest X-rays" @default.
- W4313649303 cites W2009245149 @default.
- W4313649303 cites W2100533308 @default.
- W4313649303 cites W2112796928 @default.
- W4313649303 cites W2194775991 @default.
- W4313649303 cites W2752782242 @default.
- W4313649303 cites W2867270703 @default.
- W4313649303 cites W2884585870 @default.
- W4313649303 cites W2898910301 @default.
- W4313649303 cites W2941539616 @default.
- W4313649303 cites W2946742527 @default.
- W4313649303 cites W2955058313 @default.
- W4313649303 cites W2963091558 @default.
- W4313649303 cites W2963446712 @default.
- W4313649303 cites W2963606198 @default.
- W4313649303 cites W2966926453 @default.
- W4313649303 cites W3004227146 @default.
- W4313649303 cites W3008627141 @default.
- W4313649303 cites W3013130152 @default.
- W4313649303 cites W3013640245 @default.
- W4313649303 cites W3013881554 @default.
- W4313649303 cites W3015883707 @default.
- W4313649303 cites W3015988827 @default.
- W4313649303 cites W3016610966 @default.
- W4313649303 cites W3017364693 @default.
- W4313649303 cites W3017855299 @default.
- W4313649303 cites W3021137017 @default.
- W4313649303 cites W3021622280 @default.
- W4313649303 cites W3023402713 @default.
- W4313649303 cites W3030621456 @default.
- W4313649303 cites W3033000737 @default.
- W4313649303 cites W3033546701 @default.
- W4313649303 cites W3033616466 @default.
- W4313649303 cites W3033774031 @default.
- W4313649303 cites W3036552116 @default.
- W4313649303 cites W3036688711 @default.
- W4313649303 cites W3037666819 @default.
- W4313649303 cites W3045460727 @default.
- W4313649303 cites W3048749423 @default.
- W4313649303 cites W3080237299 @default.
- W4313649303 cites W3083569822 @default.
- W4313649303 cites W3086039674 @default.
- W4313649303 cites W3088436919 @default.
- W4313649303 cites W3088680016 @default.
- W4313649303 cites W3089168916 @default.
- W4313649303 cites W3097341095 @default.
- W4313649303 cites W3104951425 @default.
- W4313649303 cites W3105081694 @default.
- W4313649303 cites W3126395150 @default.
- W4313649303 cites W3128189270 @default.
- W4313649303 cites W3128741952 @default.
- W4313649303 cites W3147450857 @default.
- W4313649303 cites W3156717587 @default.
- W4313649303 cites W3162351260 @default.
- W4313649303 cites W3174532863 @default.
- W4313649303 cites W3185654650 @default.
- W4313649303 cites W3194477403 @default.
- W4313649303 cites W4234172765 @default.
- W4313649303 cites W4254751698 @default.
- W4313649303 doi "https://doi.org/10.1038/s41598-022-27266-9" @default.
- W4313649303 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36609667" @default.
- W4313649303 hasPublicationYear "2023" @default.
- W4313649303 type Work @default.
- W4313649303 citedByCount "10" @default.
- W4313649303 countsByYear W43136493032023 @default.
- W4313649303 crossrefType "journal-article" @default.
- W4313649303 hasAuthorship W4313649303A5003627780 @default.
- W4313649303 hasAuthorship W4313649303A5047197696 @default.
- W4313649303 hasAuthorship W4313649303A5065073249 @default.
- W4313649303 hasAuthorship W4313649303A5067307648 @default.
- W4313649303 hasBestOaLocation W43136493031 @default.
- W4313649303 hasConcept C106301342 @default.
- W4313649303 hasConcept C121332964 @default.
- W4313649303 hasConcept C124101348 @default.
- W4313649303 hasConcept C138885662 @default.
- W4313649303 hasConcept C142724271 @default.
- W4313649303 hasConcept C153180895 @default.
- W4313649303 hasConcept C154945302 @default.
- W4313649303 hasConcept C2776401178 @default.
- W4313649303 hasConcept C2779134260 @default.
- W4313649303 hasConcept C3008058167 @default.
- W4313649303 hasConcept C31972630 @default.
- W4313649303 hasConcept C3770464 @default.
- W4313649303 hasConcept C41008148 @default.
- W4313649303 hasConcept C41895202 @default.
- W4313649303 hasConcept C524204448 @default.
- W4313649303 hasConcept C62520636 @default.
- W4313649303 hasConcept C71924100 @default.
- W4313649303 hasConceptScore W4313649303C106301342 @default.
- W4313649303 hasConceptScore W4313649303C121332964 @default.
- W4313649303 hasConceptScore W4313649303C124101348 @default.
- W4313649303 hasConceptScore W4313649303C138885662 @default.