Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313651572> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4313651572 endingPage "70" @default.
- W4313651572 startingPage "57" @default.
- W4313651572 abstract "There are many potential sources of data uncertainty, such as imperfect measurement or sampling, intrusive environmental monitoring, unreliable sensor networks, and inaccurate medical diagnoses. To avoid unintended results, data mining from new applications like sensors and location-based services needs to be done with care. When attempting to classify data with a high degree of uncertainty, many researchers have turned to heuristic approaches and machine learning (ML) methods. We propose an entirely new ML method in this paper by fusing the Radial Basis Function (RBF) network based on ant colony optimization (ACO). After introducing a large amount of uncertainty into a dataset, we normalize the data and finish training on clean data. The ant colony optimization algorithm is then used to train a recurrent neural network. Finally, we evaluate our proposed method against some of the most popular ML methods, including a k-nearest neighbor, support vector machine, random forest, decision tree, logistic regression, and extreme gradient boosting (Xgboost). Error metrics show that our model significantly outperforms the gold standard and other popular ML methods. Using industry-standard performance metrics, the results of our experiments show that our proposed method does a better job of classifying uncertain data than other methods" @default.
- W4313651572 created "2023-01-07" @default.
- W4313651572 creator A5004812249 @default.
- W4313651572 creator A5015529754 @default.
- W4313651572 creator A5029893083 @default.
- W4313651572 creator A5030349776 @default.
- W4313651572 date "2022-11-27" @default.
- W4313651572 modified "2023-09-30" @default.
- W4313651572 title "Novel Classification of Uncertain Stream Data using Ant Colony Optimization Based on Radial Basis Function" @default.
- W4313651572 cites W1574328159 @default.
- W4313651572 cites W1576962511 @default.
- W4313651572 cites W1975052039 @default.
- W4313651572 cites W2003654239 @default.
- W4313651572 cites W2059534150 @default.
- W4313651572 cites W2082329499 @default.
- W4313651572 cites W2090624037 @default.
- W4313651572 cites W2100406636 @default.
- W4313651572 cites W2105958932 @default.
- W4313651572 cites W2106582507 @default.
- W4313651572 cites W2110037957 @default.
- W4313651572 cites W2162073574 @default.
- W4313651572 cites W2166922785 @default.
- W4313651572 cites W2407508591 @default.
- W4313651572 cites W3010738413 @default.
- W4313651572 cites W3115399280 @default.
- W4313651572 cites W79139011 @default.
- W4313651572 doi "https://doi.org/10.24017/science.2022.2.5" @default.
- W4313651572 hasPublicationYear "2022" @default.
- W4313651572 type Work @default.
- W4313651572 citedByCount "0" @default.
- W4313651572 crossrefType "journal-article" @default.
- W4313651572 hasAuthorship W4313651572A5004812249 @default.
- W4313651572 hasAuthorship W4313651572A5015529754 @default.
- W4313651572 hasAuthorship W4313651572A5029893083 @default.
- W4313651572 hasAuthorship W4313651572A5030349776 @default.
- W4313651572 hasBestOaLocation W43136515721 @default.
- W4313651572 hasConcept C119857082 @default.
- W4313651572 hasConcept C12267149 @default.
- W4313651572 hasConcept C124101348 @default.
- W4313651572 hasConcept C154945302 @default.
- W4313651572 hasConcept C169258074 @default.
- W4313651572 hasConcept C40128228 @default.
- W4313651572 hasConcept C41008148 @default.
- W4313651572 hasConcept C50644808 @default.
- W4313651572 hasConcept C84525736 @default.
- W4313651572 hasConcept C98856871 @default.
- W4313651572 hasConceptScore W4313651572C119857082 @default.
- W4313651572 hasConceptScore W4313651572C12267149 @default.
- W4313651572 hasConceptScore W4313651572C124101348 @default.
- W4313651572 hasConceptScore W4313651572C154945302 @default.
- W4313651572 hasConceptScore W4313651572C169258074 @default.
- W4313651572 hasConceptScore W4313651572C40128228 @default.
- W4313651572 hasConceptScore W4313651572C41008148 @default.
- W4313651572 hasConceptScore W4313651572C50644808 @default.
- W4313651572 hasConceptScore W4313651572C84525736 @default.
- W4313651572 hasConceptScore W4313651572C98856871 @default.
- W4313651572 hasLocation W43136515721 @default.
- W4313651572 hasOpenAccess W4313651572 @default.
- W4313651572 hasPrimaryLocation W43136515721 @default.
- W4313651572 hasRelatedWork W3034132578 @default.
- W4313651572 hasRelatedWork W3195168932 @default.
- W4313651572 hasRelatedWork W4308191010 @default.
- W4313651572 hasRelatedWork W4321636153 @default.
- W4313651572 hasRelatedWork W4377964522 @default.
- W4313651572 hasRelatedWork W4381414210 @default.
- W4313651572 hasRelatedWork W4383535405 @default.
- W4313651572 hasRelatedWork W4384345534 @default.
- W4313651572 hasRelatedWork W4386072274 @default.
- W4313651572 hasRelatedWork W4386123260 @default.
- W4313651572 isParatext "false" @default.
- W4313651572 isRetracted "false" @default.
- W4313651572 workType "article" @default.