Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313652292> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4313652292 endingPage "16" @default.
- W4313652292 startingPage "1" @default.
- W4313652292 abstract "With the vast advancements in the medical domain, earlier prediction of disease plays a substantial role in enhancing healthcare quality and making better decisions during tough times. This research concentrates on modelling and automated disease prediction model to offer an earlier prediction model for heart disease and the risk factors. This work considers a standard UCI machine learning-based benchmark dataset for model validation and extracts the risk factors related to the disease. The outliers and imbalanced datasets are pre-processed using data normalization to enhance the classification performance. Here, feature selection is performed using non-linear Particle Swarm Optimization (NL - PSO). Finally, classification is done with the Improved Deep Evolutionary model with Feed Forward Neural Networks (IDEBDFN). The algorithm’s learning nature is used to evaluate the nature of the hidden layers to produce the optimal results. The outcomes demonstrate that the anticipated model provides superior prediction accuracy. The simulation is carried out in a MATLAB environment, and metrics like accuracy, F-measure, precision, recall, and so on are evaluated. The accuracy (without features) of the evolutionary model in the UCI ML dataset is 97.65%, accuracy (with features) is 98.56%, specificity is 95%, specificity is 2% higher than both the datasets, F1-score is 40%, execution time (min) is 0.04 min, and the AUROC is 96.85% which is substantially higher than other datasets. The proposed model works efficiently compared to various prevailing standards and individual approaches." @default.
- W4313652292 created "2023-01-07" @default.
- W4313652292 creator A5002088969 @default.
- W4313652292 creator A5014399075 @default.
- W4313652292 creator A5024984064 @default.
- W4313652292 date "2022-01-06" @default.
- W4313652292 modified "2023-09-27" @default.
- W4313652292 title "Design of an efficient decision support system using evolutionary deep forward network model" @default.
- W4313652292 cites W1982165141 @default.
- W4313652292 cites W2004910511 @default.
- W4313652292 cites W2039961296 @default.
- W4313652292 cites W2097453405 @default.
- W4313652292 cites W2178255279 @default.
- W4313652292 cites W2198899446 @default.
- W4313652292 cites W2204950599 @default.
- W4313652292 cites W2614786548 @default.
- W4313652292 cites W2760481920 @default.
- W4313652292 cites W2778279690 @default.
- W4313652292 cites W2797700545 @default.
- W4313652292 cites W2886176417 @default.
- W4313652292 cites W2886468513 @default.
- W4313652292 cites W2904593690 @default.
- W4313652292 cites W2924551060 @default.
- W4313652292 cites W2947106284 @default.
- W4313652292 cites W2982198573 @default.
- W4313652292 cites W2990041205 @default.
- W4313652292 cites W2998490530 @default.
- W4313652292 doi "https://doi.org/10.3233/jifs-220912" @default.
- W4313652292 hasPublicationYear "2022" @default.
- W4313652292 type Work @default.
- W4313652292 citedByCount "0" @default.
- W4313652292 crossrefType "journal-article" @default.
- W4313652292 hasAuthorship W4313652292A5002088969 @default.
- W4313652292 hasAuthorship W4313652292A5014399075 @default.
- W4313652292 hasAuthorship W4313652292A5024984064 @default.
- W4313652292 hasConcept C119857082 @default.
- W4313652292 hasConcept C124101348 @default.
- W4313652292 hasConcept C13280743 @default.
- W4313652292 hasConcept C136886441 @default.
- W4313652292 hasConcept C144024400 @default.
- W4313652292 hasConcept C148483581 @default.
- W4313652292 hasConcept C154945302 @default.
- W4313652292 hasConcept C159149176 @default.
- W4313652292 hasConcept C185798385 @default.
- W4313652292 hasConcept C19165224 @default.
- W4313652292 hasConcept C205649164 @default.
- W4313652292 hasConcept C41008148 @default.
- W4313652292 hasConcept C45804977 @default.
- W4313652292 hasConcept C50644808 @default.
- W4313652292 hasConcept C79337645 @default.
- W4313652292 hasConcept C85617194 @default.
- W4313652292 hasConceptScore W4313652292C119857082 @default.
- W4313652292 hasConceptScore W4313652292C124101348 @default.
- W4313652292 hasConceptScore W4313652292C13280743 @default.
- W4313652292 hasConceptScore W4313652292C136886441 @default.
- W4313652292 hasConceptScore W4313652292C144024400 @default.
- W4313652292 hasConceptScore W4313652292C148483581 @default.
- W4313652292 hasConceptScore W4313652292C154945302 @default.
- W4313652292 hasConceptScore W4313652292C159149176 @default.
- W4313652292 hasConceptScore W4313652292C185798385 @default.
- W4313652292 hasConceptScore W4313652292C19165224 @default.
- W4313652292 hasConceptScore W4313652292C205649164 @default.
- W4313652292 hasConceptScore W4313652292C41008148 @default.
- W4313652292 hasConceptScore W4313652292C45804977 @default.
- W4313652292 hasConceptScore W4313652292C50644808 @default.
- W4313652292 hasConceptScore W4313652292C79337645 @default.
- W4313652292 hasConceptScore W4313652292C85617194 @default.
- W4313652292 hasLocation W43136522921 @default.
- W4313652292 hasOpenAccess W4313652292 @default.
- W4313652292 hasPrimaryLocation W43136522921 @default.
- W4313652292 hasRelatedWork W2371761421 @default.
- W4313652292 hasRelatedWork W2973799232 @default.
- W4313652292 hasRelatedWork W3174196512 @default.
- W4313652292 hasRelatedWork W3200179079 @default.
- W4313652292 hasRelatedWork W3210877509 @default.
- W4313652292 hasRelatedWork W4212852473 @default.
- W4313652292 hasRelatedWork W4225360065 @default.
- W4313652292 hasRelatedWork W4293525103 @default.
- W4313652292 hasRelatedWork W4366376591 @default.
- W4313652292 hasRelatedWork W1629725936 @default.
- W4313652292 isParatext "false" @default.
- W4313652292 isRetracted "false" @default.
- W4313652292 workType "article" @default.