Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313652505> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4313652505 endingPage "054303" @default.
- W4313652505 startingPage "054303" @default.
- W4313652505 abstract "Most of shallow water geoacoustic inversions based on modal dispersion cannot reliably estimate the deep geoacoustic parameters. Because these studies focused on the dispersions of water waves but ignored the dispersions of ground waves. Therefore, in this paper a Bayesian geoacoustic inversion is studied based on wideband modal dispersions of water waves and ground waves. Firstly, the modal dispersion curves with Airy phase components are discussed. Secondly, the Bayesian inversion theory and a novel sample-efficient inference algorithm, namely Variational Bayesian Monte Carlo, are introduced briefly. In the Bayesian inversion, the posterior probability densities of unknown parameters are inferred, which can provide the prediction closest to the observation data and the uncertainty of the prediction. Considering that the forward acoustic model is computationally intensive, the posterior analysis is carried out by using the Variational Bayesian Monte Carlo method. It is performed by finding the variational distribution closest to the target distribution and requires less computation time than the Markov chain Monto Carlo method. In the simulation study, a range-independent two-layer seabed, including the sediment layer and basement layer, is modeled, on the assumption that the water column is homogeneous. The function of shear wave in waveguide is ignored. The compressional sound speed of the sediment layer varies linearly from <i>c</i><sub>1U</sub> to <i>c</i><sub>1L</sub> between 0 and <i>h</i><sub>1</sub>, while other geoacoustic parameters are constant. By comparing the inversion results with and without the information of ground waves for different signal-to-noise ratios, it can be concluded that the deep geoacoustic parameters are more sensitive to the dispersions of ground waves. And then, a shallow-water experimental study is carried out in the Bohai Sea of China. The average water depth is about 20 m. The wideband pulse signals are recorded by a hydrophone with a sensitivity of –170 dB re 1 V/μPa. The received signals include well-defined Airy phase components, and the modal dispersion curves of water waves and ground waves are extracted accurately. The experimental results indicate that the Bayesian inversion combining water and ground wave dispersions can not only estimate the deep geoacoustic parameters reliably, but also reduce the inversion uncertainties of other model parameters, such as the shallow geoacoustic parameters, water depth, etc. The estimated source-receiver range and water sound speed are close to their measured values. The modal dispersion curves predicted by the posterior mean samples are in good consistence with those extracted from the experimental data in different ranges. In addition, the good forecast of transmission loss also demonstrates the reliability of the joint inversion." @default.
- W4313652505 created "2023-01-07" @default.
- W4313652505 creator A5066678888 @default.
- W4313652505 creator A5070603421 @default.
- W4313652505 creator A5089178051 @default.
- W4313652505 date "2023-01-01" @default.
- W4313652505 modified "2023-10-05" @default.
- W4313652505 title "Bayesian geoacoustic parameter inversion based on dispersion characteristics of normal mode water wave and ground wave" @default.
- W4313652505 cites W2000017751 @default.
- W4313652505 cites W2017091438 @default.
- W4313652505 cites W2030004508 @default.
- W4313652505 cites W2041976256 @default.
- W4313652505 cites W2069343177 @default.
- W4313652505 cites W2090218979 @default.
- W4313652505 cites W2139474377 @default.
- W4313652505 cites W2222016700 @default.
- W4313652505 cites W2231980143 @default.
- W4313652505 cites W2790538754 @default.
- W4313652505 cites W3009588499 @default.
- W4313652505 cites W3013791807 @default.
- W4313652505 cites W3101380508 @default.
- W4313652505 cites W3109038844 @default.
- W4313652505 cites W3113189257 @default.
- W4313652505 cites W3117653045 @default.
- W4313652505 cites W3183468528 @default.
- W4313652505 cites W4233110362 @default.
- W4313652505 doi "https://doi.org/10.7498/aps.72.20221717" @default.
- W4313652505 hasPublicationYear "2023" @default.
- W4313652505 type Work @default.
- W4313652505 citedByCount "0" @default.
- W4313652505 crossrefType "journal-article" @default.
- W4313652505 hasAuthorship W4313652505A5066678888 @default.
- W4313652505 hasAuthorship W4313652505A5070603421 @default.
- W4313652505 hasAuthorship W4313652505A5089178051 @default.
- W4313652505 hasBestOaLocation W43136525051 @default.
- W4313652505 hasConcept C105795698 @default.
- W4313652505 hasConcept C107673813 @default.
- W4313652505 hasConcept C109007969 @default.
- W4313652505 hasConcept C11413529 @default.
- W4313652505 hasConcept C121332964 @default.
- W4313652505 hasConcept C121864883 @default.
- W4313652505 hasConcept C127313418 @default.
- W4313652505 hasConcept C151730666 @default.
- W4313652505 hasConcept C160234255 @default.
- W4313652505 hasConcept C1893757 @default.
- W4313652505 hasConcept C19499675 @default.
- W4313652505 hasConcept C204723758 @default.
- W4313652505 hasConcept C24890656 @default.
- W4313652505 hasConcept C2781011175 @default.
- W4313652505 hasConcept C33923547 @default.
- W4313652505 hasConceptScore W4313652505C105795698 @default.
- W4313652505 hasConceptScore W4313652505C107673813 @default.
- W4313652505 hasConceptScore W4313652505C109007969 @default.
- W4313652505 hasConceptScore W4313652505C11413529 @default.
- W4313652505 hasConceptScore W4313652505C121332964 @default.
- W4313652505 hasConceptScore W4313652505C121864883 @default.
- W4313652505 hasConceptScore W4313652505C127313418 @default.
- W4313652505 hasConceptScore W4313652505C151730666 @default.
- W4313652505 hasConceptScore W4313652505C160234255 @default.
- W4313652505 hasConceptScore W4313652505C1893757 @default.
- W4313652505 hasConceptScore W4313652505C19499675 @default.
- W4313652505 hasConceptScore W4313652505C204723758 @default.
- W4313652505 hasConceptScore W4313652505C24890656 @default.
- W4313652505 hasConceptScore W4313652505C2781011175 @default.
- W4313652505 hasConceptScore W4313652505C33923547 @default.
- W4313652505 hasIssue "5" @default.
- W4313652505 hasLocation W43136525051 @default.
- W4313652505 hasOpenAccess W4313652505 @default.
- W4313652505 hasPrimaryLocation W43136525051 @default.
- W4313652505 hasRelatedWork W2005266888 @default.
- W4313652505 hasRelatedWork W2030758695 @default.
- W4313652505 hasRelatedWork W2039637073 @default.
- W4313652505 hasRelatedWork W2053034080 @default.
- W4313652505 hasRelatedWork W2102423997 @default.
- W4313652505 hasRelatedWork W2155290177 @default.
- W4313652505 hasRelatedWork W2331372853 @default.
- W4313652505 hasRelatedWork W2381327947 @default.
- W4313652505 hasRelatedWork W2804223419 @default.
- W4313652505 hasRelatedWork W3175794431 @default.
- W4313652505 hasVolume "72" @default.
- W4313652505 isParatext "false" @default.
- W4313652505 isRetracted "false" @default.
- W4313652505 workType "article" @default.