Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313652570> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4313652570 endingPage "85" @default.
- W4313652570 startingPage "66" @default.
- W4313652570 abstract "The network slicing defined from 3GPP Rel. 15 is one important feature and function for 5G networks. In this paper, a new machine learning scheme is proposed by extending existing generative adversarial network (GAN) based deep reinforcement learning (DRL) result, namely Twin-GAN-based DRL (TGDRL) scheme, by utilizing two GAN-based DRLs to jointly allocate wireless bandwidth resources and computational resources. Existing resource allocation results are just only consider the bandwidth allocation, or just only consider the computational resource allocation. The main contribution of the proposed TGDRL scheme is to simultaneously investigate the bandwidth allocation and computational resource allocation by utilizing a multi-objective optimization algorithm, which aims to improve the efficiency of spectrum and reduce the consumption of computational resources. In our simulation, the total delay, the spectral efficiency, and the computational consumption of our proposed scheme is improved by 10.2%, 15.7%, and 12.8%, compared to existing schemes." @default.
- W4313652570 created "2023-01-07" @default.
- W4313652570 creator A5048834889 @default.
- W4313652570 creator A5069827284 @default.
- W4313652570 creator A5073171529 @default.
- W4313652570 date "2023-02-01" @default.
- W4313652570 modified "2023-10-03" @default.
- W4313652570 title "Optimizing communication and computational resource allocations in network slicing using twin-GAN-Based DRL for 5G hybrid C-RAN" @default.
- W4313652570 cites W2040340473 @default.
- W4313652570 cites W2059450064 @default.
- W4313652570 cites W2485276051 @default.
- W4313652570 cites W2500898769 @default.
- W4313652570 cites W2613010233 @default.
- W4313652570 cites W2781839613 @default.
- W4313652570 cites W2786932819 @default.
- W4313652570 cites W2790901593 @default.
- W4313652570 cites W2791852388 @default.
- W4313652570 cites W2795841196 @default.
- W4313652570 cites W2805173205 @default.
- W4313652570 cites W2808410512 @default.
- W4313652570 cites W2898035736 @default.
- W4313652570 cites W2900804979 @default.
- W4313652570 cites W2912116305 @default.
- W4313652570 cites W2916079228 @default.
- W4313652570 cites W2921353139 @default.
- W4313652570 cites W2954022626 @default.
- W4313652570 cites W2962490504 @default.
- W4313652570 cites W2963577337 @default.
- W4313652570 cites W2972260047 @default.
- W4313652570 cites W3010042009 @default.
- W4313652570 cites W3207047766 @default.
- W4313652570 doi "https://doi.org/10.1016/j.comcom.2023.01.002" @default.
- W4313652570 hasPublicationYear "2023" @default.
- W4313652570 type Work @default.
- W4313652570 citedByCount "2" @default.
- W4313652570 crossrefType "journal-article" @default.
- W4313652570 hasAuthorship W4313652570A5048834889 @default.
- W4313652570 hasAuthorship W4313652570A5069827284 @default.
- W4313652570 hasAuthorship W4313652570A5073171529 @default.
- W4313652570 hasConcept C11413529 @default.
- W4313652570 hasConcept C120314980 @default.
- W4313652570 hasConcept C126255220 @default.
- W4313652570 hasConcept C127162648 @default.
- W4313652570 hasConcept C127964446 @default.
- W4313652570 hasConcept C134306372 @default.
- W4313652570 hasConcept C136764020 @default.
- W4313652570 hasConcept C137246740 @default.
- W4313652570 hasConcept C154945302 @default.
- W4313652570 hasConcept C179799912 @default.
- W4313652570 hasConcept C200157131 @default.
- W4313652570 hasConcept C2776190703 @default.
- W4313652570 hasConcept C2776257435 @default.
- W4313652570 hasConcept C29202148 @default.
- W4313652570 hasConcept C31258907 @default.
- W4313652570 hasConcept C33923547 @default.
- W4313652570 hasConcept C41008148 @default.
- W4313652570 hasConcept C77618280 @default.
- W4313652570 hasConcept C97541855 @default.
- W4313652570 hasConceptScore W4313652570C11413529 @default.
- W4313652570 hasConceptScore W4313652570C120314980 @default.
- W4313652570 hasConceptScore W4313652570C126255220 @default.
- W4313652570 hasConceptScore W4313652570C127162648 @default.
- W4313652570 hasConceptScore W4313652570C127964446 @default.
- W4313652570 hasConceptScore W4313652570C134306372 @default.
- W4313652570 hasConceptScore W4313652570C136764020 @default.
- W4313652570 hasConceptScore W4313652570C137246740 @default.
- W4313652570 hasConceptScore W4313652570C154945302 @default.
- W4313652570 hasConceptScore W4313652570C179799912 @default.
- W4313652570 hasConceptScore W4313652570C200157131 @default.
- W4313652570 hasConceptScore W4313652570C2776190703 @default.
- W4313652570 hasConceptScore W4313652570C2776257435 @default.
- W4313652570 hasConceptScore W4313652570C29202148 @default.
- W4313652570 hasConceptScore W4313652570C31258907 @default.
- W4313652570 hasConceptScore W4313652570C33923547 @default.
- W4313652570 hasConceptScore W4313652570C41008148 @default.
- W4313652570 hasConceptScore W4313652570C77618280 @default.
- W4313652570 hasConceptScore W4313652570C97541855 @default.
- W4313652570 hasFunder F4320322795 @default.
- W4313652570 hasLocation W43136525701 @default.
- W4313652570 hasOpenAccess W4313652570 @default.
- W4313652570 hasPrimaryLocation W43136525701 @default.
- W4313652570 hasRelatedWork W1591008877 @default.
- W4313652570 hasRelatedWork W1973666842 @default.
- W4313652570 hasRelatedWork W2995391442 @default.
- W4313652570 hasRelatedWork W3074294383 @default.
- W4313652570 hasRelatedWork W3091823410 @default.
- W4313652570 hasRelatedWork W3206494224 @default.
- W4313652570 hasRelatedWork W4283067488 @default.
- W4313652570 hasRelatedWork W4295941380 @default.
- W4313652570 hasRelatedWork W4313652570 @default.
- W4313652570 hasRelatedWork W4362709110 @default.
- W4313652570 hasVolume "200" @default.
- W4313652570 isParatext "false" @default.
- W4313652570 isRetracted "false" @default.
- W4313652570 workType "article" @default.