Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313652786> ?p ?o ?g. }
- W4313652786 endingPage "2016" @default.
- W4313652786 startingPage "1989" @default.
- W4313652786 abstract "Abstract In the last decade, a large number of knowledge graph (KG) completion approaches were proposed. Albeit effective, these efforts are disjoint, and their collective strengths and weaknesses in effective KG completion have not been studied in the literature. We extend Plumber , a framework that brings together the research community’s disjoint efforts on KG completion. We include more components into the architecture of Plumber to comprise 40 reusable components for various KG completion subtasks, such as coreference resolution, entity linking, and relation extraction. Using these components, Plumber dynamically generates suitable knowledge extraction pipelines and offers overall 432 distinct pipelines. We study the optimization problem of choosing optimal pipelines based on input sentences. To do so, we train a transformer-based classification model that extracts contextual embeddings from the input and finds an appropriate pipeline. We study the efficacy of Plumber for extracting the KG triples using standard datasets over three KGs: DBpedia, Wikidata, and Open Research Knowledge Graph. Our results demonstrate the effectiveness of Plumber in dynamically generating KG completion pipelines, outperforming all baselines agnostic of the underlying KG. Furthermore, we provide an analysis of collective failure cases, study the similarities and synergies among integrated components and discuss their limitations." @default.
- W4313652786 created "2023-01-07" @default.
- W4313652786 creator A5002627051 @default.
- W4313652786 creator A5062163326 @default.
- W4313652786 creator A5071736571 @default.
- W4313652786 creator A5071765665 @default.
- W4313652786 creator A5078133624 @default.
- W4313652786 date "2023-01-07" @default.
- W4313652786 modified "2023-10-03" @default.
- W4313652786 title "Information extraction pipelines for knowledge graphs" @default.
- W4313652786 cites W102708294 @default.
- W4313652786 cites W1529731474 @default.
- W4313652786 cites W1867065903 @default.
- W4313652786 cites W1982600306 @default.
- W4313652786 cites W2026810221 @default.
- W4313652786 cites W2074930186 @default.
- W4313652786 cites W2080133951 @default.
- W4313652786 cites W2099223662 @default.
- W4313652786 cites W2123142779 @default.
- W4313652786 cites W2133864496 @default.
- W4313652786 cites W2137489006 @default.
- W4313652786 cites W2143933463 @default.
- W4313652786 cites W2146615496 @default.
- W4313652786 cites W2153382583 @default.
- W4313652786 cites W2159583324 @default.
- W4313652786 cites W2251913848 @default.
- W4313652786 cites W2471421388 @default.
- W4313652786 cites W2739874095 @default.
- W4313652786 cites W2757101400 @default.
- W4313652786 cites W2763039547 @default.
- W4313652786 cites W2778792674 @default.
- W4313652786 cites W2788460763 @default.
- W4313652786 cites W2891944014 @default.
- W4313652786 cites W2899297497 @default.
- W4313652786 cites W2904256628 @default.
- W4313652786 cites W2923400109 @default.
- W4313652786 cites W2946606955 @default.
- W4313652786 cites W2949181687 @default.
- W4313652786 cites W2963102202 @default.
- W4313652786 cites W2963167649 @default.
- W4313652786 cites W2963168538 @default.
- W4313652786 cites W2970671085 @default.
- W4313652786 cites W2970808735 @default.
- W4313652786 cites W2981162686 @default.
- W4313652786 cites W2983050946 @default.
- W4313652786 cites W2997028620 @default.
- W4313652786 cites W3029624308 @default.
- W4313652786 cites W3092710364 @default.
- W4313652786 cites W3110353462 @default.
- W4313652786 cites W3118511871 @default.
- W4313652786 cites W3157022402 @default.
- W4313652786 cites W3161322922 @default.
- W4313652786 cites W3171296337 @default.
- W4313652786 cites W4212904135 @default.
- W4313652786 cites W4239696231 @default.
- W4313652786 cites W4241096217 @default.
- W4313652786 doi "https://doi.org/10.1007/s10115-022-01826-x" @default.
- W4313652786 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36643405" @default.
- W4313652786 hasPublicationYear "2023" @default.
- W4313652786 type Work @default.
- W4313652786 citedByCount "3" @default.
- W4313652786 countsByYear W43136527862023 @default.
- W4313652786 crossrefType "journal-article" @default.
- W4313652786 hasAuthorship W4313652786A5002627051 @default.
- W4313652786 hasAuthorship W4313652786A5062163326 @default.
- W4313652786 hasAuthorship W4313652786A5071736571 @default.
- W4313652786 hasAuthorship W4313652786A5071765665 @default.
- W4313652786 hasAuthorship W4313652786A5078133624 @default.
- W4313652786 hasBestOaLocation W43136527861 @default.
- W4313652786 hasConcept C105795698 @default.
- W4313652786 hasConcept C114614502 @default.
- W4313652786 hasConcept C121332964 @default.
- W4313652786 hasConcept C124101348 @default.
- W4313652786 hasConcept C127413603 @default.
- W4313652786 hasConcept C132525143 @default.
- W4313652786 hasConcept C138268822 @default.
- W4313652786 hasConcept C153604712 @default.
- W4313652786 hasConcept C154945302 @default.
- W4313652786 hasConcept C165801399 @default.
- W4313652786 hasConcept C175309249 @default.
- W4313652786 hasConcept C195807954 @default.
- W4313652786 hasConcept C199360897 @default.
- W4313652786 hasConcept C23123220 @default.
- W4313652786 hasConcept C28076734 @default.
- W4313652786 hasConcept C2987255567 @default.
- W4313652786 hasConcept C33923547 @default.
- W4313652786 hasConcept C37381756 @default.
- W4313652786 hasConcept C41008148 @default.
- W4313652786 hasConcept C43521106 @default.
- W4313652786 hasConcept C45340560 @default.
- W4313652786 hasConcept C4554734 @default.
- W4313652786 hasConcept C62520636 @default.
- W4313652786 hasConcept C66322947 @default.
- W4313652786 hasConcept C80444323 @default.
- W4313652786 hasConcept C87717796 @default.
- W4313652786 hasConcept C96711827 @default.
- W4313652786 hasConceptScore W4313652786C105795698 @default.
- W4313652786 hasConceptScore W4313652786C114614502 @default.