Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313654929> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4313654929 endingPage "107612" @default.
- W4313654929 startingPage "107612" @default.
- W4313654929 abstract "Research on the optimization and control of greenhouse light environment is of great significance to improve the production efficiency and economic benefits of greenhouse crop. The optimization of greenhouse light environment should not only meet the requirements of crop photosynthesis, but also reduce the energy consumption cost during light supplement. Therefore, in this paper, a multi-objective optimization model of greenhouse light environment was first established, which was aimed at maximizing the photosynthetic rate of crop and minimizing the energy consumption cost. Then, there were errors between the outputs of photosynthetic rate model and the actual values, which led to that the optimization results based on the photosynthetic rate model were not the actual optimal values, so Gaussian mixture model (GMM) was used to describe the error characteristics of photosynthetic rate model. The error compensation of photosynthetic rate model was realized, and it was introduced into the optimization objective, thus forming a multi-objective optimization model of greenhouse light environment after error compensation. In addition, an improved NSGA-II algorithm based on average distance clustering (ADCNSGA-II) was proposed to solve the multi-objective optimization model. The algorithm divided the whole population into several small populations by using average distance, and then selected, crossed, and mutated small populations. This operation could effectively maintain the diversity of Pareto optimal solution set, and further improve the convergence of algorithm. Finally, taking tomato in a solar greenhouse of the experimental base of Shenyang Agricultural University in Northeast China as the research crop, the established model and the proposed optimal regulation method were verified through simulation experiments. The results showed that the RMSE and MAPE of photosynthetic rate model based on error compensation were 0.7641 and 2.6413 respectively, and the CC of the model was 0.9803, indicating that the model has good prediction performance. Moreover, ADCNSGA-II algorithm was used to solve the multi-objective optimization model after error compensation, and the results were compared with those obtained by solving the optimization model before error compensation. The optimization results obtained by solving the optimization model after error compensation were closer to the actual values, which further proved the reliability of the proposed optimal regulation method." @default.
- W4313654929 created "2023-01-07" @default.
- W4313654929 creator A5004565086 @default.
- W4313654929 creator A5009872228 @default.
- W4313654929 creator A5011241874 @default.
- W4313654929 creator A5018110279 @default.
- W4313654929 creator A5042426677 @default.
- W4313654929 date "2023-02-01" @default.
- W4313654929 modified "2023-09-26" @default.
- W4313654929 title "Multi-objective optimization for greenhouse light environment using Gaussian mixture model and an improved NSGA-II algorithm" @default.
- W4313654929 cites W2111315339 @default.
- W4313654929 cites W2126105956 @default.
- W4313654929 cites W2155146419 @default.
- W4313654929 cites W2431701667 @default.
- W4313654929 cites W2505572382 @default.
- W4313654929 cites W2587488580 @default.
- W4313654929 cites W2605919849 @default.
- W4313654929 cites W2726724847 @default.
- W4313654929 cites W2755052565 @default.
- W4313654929 cites W2797531260 @default.
- W4313654929 cites W2894586742 @default.
- W4313654929 cites W2922976429 @default.
- W4313654929 cites W2962214891 @default.
- W4313654929 cites W2979517792 @default.
- W4313654929 cites W2983617333 @default.
- W4313654929 cites W3008598218 @default.
- W4313654929 cites W3081135687 @default.
- W4313654929 cites W3088961167 @default.
- W4313654929 cites W3109130207 @default.
- W4313654929 doi "https://doi.org/10.1016/j.compag.2022.107612" @default.
- W4313654929 hasPublicationYear "2023" @default.
- W4313654929 type Work @default.
- W4313654929 citedByCount "2" @default.
- W4313654929 countsByYear W43136549292023 @default.
- W4313654929 crossrefType "journal-article" @default.
- W4313654929 hasAuthorship W4313654929A5004565086 @default.
- W4313654929 hasAuthorship W4313654929A5009872228 @default.
- W4313654929 hasAuthorship W4313654929A5011241874 @default.
- W4313654929 hasAuthorship W4313654929A5018110279 @default.
- W4313654929 hasAuthorship W4313654929A5042426677 @default.
- W4313654929 hasConcept C119599485 @default.
- W4313654929 hasConcept C126255220 @default.
- W4313654929 hasConcept C127413603 @default.
- W4313654929 hasConcept C144027150 @default.
- W4313654929 hasConcept C2780165032 @default.
- W4313654929 hasConcept C32198211 @default.
- W4313654929 hasConcept C33923547 @default.
- W4313654929 hasConcept C41008148 @default.
- W4313654929 hasConcept C68781425 @default.
- W4313654929 hasConcept C86803240 @default.
- W4313654929 hasConcept C88463610 @default.
- W4313654929 hasConcept C8880873 @default.
- W4313654929 hasConceptScore W4313654929C119599485 @default.
- W4313654929 hasConceptScore W4313654929C126255220 @default.
- W4313654929 hasConceptScore W4313654929C127413603 @default.
- W4313654929 hasConceptScore W4313654929C144027150 @default.
- W4313654929 hasConceptScore W4313654929C2780165032 @default.
- W4313654929 hasConceptScore W4313654929C32198211 @default.
- W4313654929 hasConceptScore W4313654929C33923547 @default.
- W4313654929 hasConceptScore W4313654929C41008148 @default.
- W4313654929 hasConceptScore W4313654929C68781425 @default.
- W4313654929 hasConceptScore W4313654929C86803240 @default.
- W4313654929 hasConceptScore W4313654929C88463610 @default.
- W4313654929 hasConceptScore W4313654929C8880873 @default.
- W4313654929 hasLocation W43136549291 @default.
- W4313654929 hasOpenAccess W4313654929 @default.
- W4313654929 hasPrimaryLocation W43136549291 @default.
- W4313654929 hasRelatedWork W1977938613 @default.
- W4313654929 hasRelatedWork W2023220189 @default.
- W4313654929 hasRelatedWork W2127206640 @default.
- W4313654929 hasRelatedWork W2145877535 @default.
- W4313654929 hasRelatedWork W2272749499 @default.
- W4313654929 hasRelatedWork W2972379113 @default.
- W4313654929 hasRelatedWork W3043260233 @default.
- W4313654929 hasRelatedWork W3050579520 @default.
- W4313654929 hasRelatedWork W71054027 @default.
- W4313654929 hasRelatedWork W3151104768 @default.
- W4313654929 hasVolume "205" @default.
- W4313654929 isParatext "false" @default.
- W4313654929 isRetracted "false" @default.
- W4313654929 workType "article" @default.