Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313656258> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4313656258 abstract "Abstract Several applications depend on the localization technique in underwater visible light communication (UVLC) systems, as military, petroleum, and diving fields. Recent research aims to develop the localization system by different methods to obtain the optimum position of the receiver. In this paper, we use Kalman Filter (KF) algorithm with average Received Signal Strength (RSS) technique using optimization. Optimized Deep Learning Models (DLMs) are utilized to improve the system performance, including such as ResNet50V2, InceptionResNetV2, SSD, and RetinaNet. Two channel modeling Weighted Double Gamma Function (WDGF) with a Combination Exponential Arbitrary Power Function (CEAPF) are used for sea water to enhance the UVLC localization system. The obtained results show that using CEAPF channel modeling with ResNetV2 strategy achieves the best accuracy of the localization for different methods. Also, the ResNetV2 outperforms other strategies for using RSS average technique. The RSS with KF and DLM achieves a higher accuracy with ResNetV2 than InceptionResNetV2, RetinaNet and SSD. Using WDGF achieves accuracy less than that in CEAPF where for using KF with average RSS method. Applying the RSS with KF with CEAPF channel modeling improves the performance than using WDGF. We use an automatic hyper-parameter (HP) approach to the Bayesian optimization models ResNet50V2, InceptionResNetV2, SSD, and RetinaNet. The ResNet50V2 based on average RSS technique hybrid with KF in CEAPF channel model achieves 99.99% accuracy, 99.99% area under the curve (AUC), 99.98% precision, 99.89% F1-score, 0.099 RMSE and 0.43 s testing time." @default.
- W4313656258 created "2023-01-07" @default.
- W4313656258 creator A5010491131 @default.
- W4313656258 creator A5028944630 @default.
- W4313656258 creator A5048054932 @default.
- W4313656258 date "2023-01-07" @default.
- W4313656258 modified "2023-10-01" @default.
- W4313656258 title "Optimized deep learning/kalman filter-based underwater localization in VLC systems" @default.
- W4313656258 cites W2008554897 @default.
- W4313656258 cites W2011831153 @default.
- W4313656258 cites W2016508736 @default.
- W4313656258 cites W2073808079 @default.
- W4313656258 cites W2111566853 @default.
- W4313656258 cites W2127334693 @default.
- W4313656258 cites W2794494292 @default.
- W4313656258 cites W2801476520 @default.
- W4313656258 cites W2805473483 @default.
- W4313656258 cites W2919011445 @default.
- W4313656258 cites W2920939565 @default.
- W4313656258 cites W2929634766 @default.
- W4313656258 cites W2963190415 @default.
- W4313656258 cites W2964374138 @default.
- W4313656258 cites W2964536579 @default.
- W4313656258 cites W2968388673 @default.
- W4313656258 cites W2978980369 @default.
- W4313656258 cites W3000274549 @default.
- W4313656258 cites W3041041909 @default.
- W4313656258 cites W3082781904 @default.
- W4313656258 cites W3112162098 @default.
- W4313656258 cites W3148113884 @default.
- W4313656258 cites W3203209323 @default.
- W4313656258 cites W4206338196 @default.
- W4313656258 cites W4213417486 @default.
- W4313656258 cites W4224282015 @default.
- W4313656258 cites W4245930807 @default.
- W4313656258 cites W4286210155 @default.
- W4313656258 doi "https://doi.org/10.1007/s11082-022-04464-3" @default.
- W4313656258 hasPublicationYear "2023" @default.
- W4313656258 type Work @default.
- W4313656258 citedByCount "0" @default.
- W4313656258 crossrefType "journal-article" @default.
- W4313656258 hasAuthorship W4313656258A5010491131 @default.
- W4313656258 hasAuthorship W4313656258A5028944630 @default.
- W4313656258 hasAuthorship W4313656258A5048054932 @default.
- W4313656258 hasBestOaLocation W43136562581 @default.
- W4313656258 hasConcept C105795698 @default.
- W4313656258 hasConcept C111368507 @default.
- W4313656258 hasConcept C111919701 @default.
- W4313656258 hasConcept C11413529 @default.
- W4313656258 hasConcept C127162648 @default.
- W4313656258 hasConcept C127313418 @default.
- W4313656258 hasConcept C139945424 @default.
- W4313656258 hasConcept C154945302 @default.
- W4313656258 hasConcept C157286648 @default.
- W4313656258 hasConcept C206833254 @default.
- W4313656258 hasConcept C2385561 @default.
- W4313656258 hasConcept C33923547 @default.
- W4313656258 hasConcept C41008148 @default.
- W4313656258 hasConcept C76155785 @default.
- W4313656258 hasConcept C79403827 @default.
- W4313656258 hasConcept C98083399 @default.
- W4313656258 hasConceptScore W4313656258C105795698 @default.
- W4313656258 hasConceptScore W4313656258C111368507 @default.
- W4313656258 hasConceptScore W4313656258C111919701 @default.
- W4313656258 hasConceptScore W4313656258C11413529 @default.
- W4313656258 hasConceptScore W4313656258C127162648 @default.
- W4313656258 hasConceptScore W4313656258C127313418 @default.
- W4313656258 hasConceptScore W4313656258C139945424 @default.
- W4313656258 hasConceptScore W4313656258C154945302 @default.
- W4313656258 hasConceptScore W4313656258C157286648 @default.
- W4313656258 hasConceptScore W4313656258C206833254 @default.
- W4313656258 hasConceptScore W4313656258C2385561 @default.
- W4313656258 hasConceptScore W4313656258C33923547 @default.
- W4313656258 hasConceptScore W4313656258C41008148 @default.
- W4313656258 hasConceptScore W4313656258C76155785 @default.
- W4313656258 hasConceptScore W4313656258C79403827 @default.
- W4313656258 hasConceptScore W4313656258C98083399 @default.
- W4313656258 hasFunder F4320313982 @default.
- W4313656258 hasIssue "3" @default.
- W4313656258 hasLocation W43136562581 @default.
- W4313656258 hasOpenAccess W4313656258 @default.
- W4313656258 hasPrimaryLocation W43136562581 @default.
- W4313656258 hasRelatedWork W2088103156 @default.
- W4313656258 hasRelatedWork W2276866798 @default.
- W4313656258 hasRelatedWork W2350198701 @default.
- W4313656258 hasRelatedWork W2363748000 @default.
- W4313656258 hasRelatedWork W2379534227 @default.
- W4313656258 hasRelatedWork W2403695928 @default.
- W4313656258 hasRelatedWork W2990308920 @default.
- W4313656258 hasRelatedWork W3105606136 @default.
- W4313656258 hasRelatedWork W3213169174 @default.
- W4313656258 hasRelatedWork W4226390897 @default.
- W4313656258 hasVolume "55" @default.
- W4313656258 isParatext "false" @default.
- W4313656258 isRetracted "false" @default.
- W4313656258 workType "article" @default.