Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313679843> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4313679843 abstract "Driver attention prediction is becoming an essential research problem in human-like driving systems. This work makes an attempt to predict the driver attention in driving accident scenarios (DADA). However, challenges tread on the heels of that because of the dynamic traffic scene, intricate and imbalanced accident categories. In this work, we design a semantic context induced attentive fusion network (SCAFNet). We first segment the RGB video frames into the images with different semantic regions (i.e., semantic images), where each region denotes one kind of semantic categories of the scene (e.g., road, trees, etc.), and learn the spatio-temporal features of RGB frames and semantic images in two parallel paths simultaneously. Then, the learned features are fused by an attentive fusion network to find the semantic-induced scene variation in driver attention prediction. The contributions are three folds. 1) With the semantic images, we introduce their semantic context features and verified the manifest promotion effect for helping the driver attention prediction, where the semantic context features are modeled by a graph convolution network (GCN) on semantic images; 2) We fuse the semantic context features of semantic images and the features of RGB frames in an attentive strategy, and the fused details are transferred over frames by a convolutional LSTM module to obtain the attention map of each video frame with the consideration of historical scene variation in driving situations; 3) The superiority of the proposed method is evaluated on our previously collected dataset (named as DADA-2000) and two other challenging datasets with state-of-the-art methods. DADA-2000 is available at https://github.com/JWFangit/LOTVS-DADA." @default.
- W4313679843 created "2023-01-08" @default.
- W4313679843 creator A5025512337 @default.
- W4313679843 creator A5025751449 @default.
- W4313679843 creator A5042245655 @default.
- W4313679843 creator A5080344490 @default.
- W4313679843 creator A5091066010 @default.
- W4313679843 date "2019-12-18" @default.
- W4313679843 modified "2023-09-30" @default.
- W4313679843 title "DADA: Driver Attention Prediction in Driving Accident Scenarios" @default.
- W4313679843 doi "https://doi.org/10.48550/arxiv.1912.12148" @default.
- W4313679843 hasPublicationYear "2019" @default.
- W4313679843 type Work @default.
- W4313679843 citedByCount "0" @default.
- W4313679843 crossrefType "posted-content" @default.
- W4313679843 hasAuthorship W4313679843A5025512337 @default.
- W4313679843 hasAuthorship W4313679843A5025751449 @default.
- W4313679843 hasAuthorship W4313679843A5042245655 @default.
- W4313679843 hasAuthorship W4313679843A5080344490 @default.
- W4313679843 hasAuthorship W4313679843A5091066010 @default.
- W4313679843 hasBestOaLocation W43136798431 @default.
- W4313679843 hasConcept C126042441 @default.
- W4313679843 hasConcept C132525143 @default.
- W4313679843 hasConcept C151730666 @default.
- W4313679843 hasConcept C154945302 @default.
- W4313679843 hasConcept C179372163 @default.
- W4313679843 hasConcept C184337299 @default.
- W4313679843 hasConcept C199360897 @default.
- W4313679843 hasConcept C205711294 @default.
- W4313679843 hasConcept C2779343474 @default.
- W4313679843 hasConcept C31972630 @default.
- W4313679843 hasConcept C41008148 @default.
- W4313679843 hasConcept C76155785 @default.
- W4313679843 hasConcept C80444323 @default.
- W4313679843 hasConcept C81363708 @default.
- W4313679843 hasConcept C82990744 @default.
- W4313679843 hasConcept C86803240 @default.
- W4313679843 hasConceptScore W4313679843C126042441 @default.
- W4313679843 hasConceptScore W4313679843C132525143 @default.
- W4313679843 hasConceptScore W4313679843C151730666 @default.
- W4313679843 hasConceptScore W4313679843C154945302 @default.
- W4313679843 hasConceptScore W4313679843C179372163 @default.
- W4313679843 hasConceptScore W4313679843C184337299 @default.
- W4313679843 hasConceptScore W4313679843C199360897 @default.
- W4313679843 hasConceptScore W4313679843C205711294 @default.
- W4313679843 hasConceptScore W4313679843C2779343474 @default.
- W4313679843 hasConceptScore W4313679843C31972630 @default.
- W4313679843 hasConceptScore W4313679843C41008148 @default.
- W4313679843 hasConceptScore W4313679843C76155785 @default.
- W4313679843 hasConceptScore W4313679843C80444323 @default.
- W4313679843 hasConceptScore W4313679843C81363708 @default.
- W4313679843 hasConceptScore W4313679843C82990744 @default.
- W4313679843 hasConceptScore W4313679843C86803240 @default.
- W4313679843 hasLocation W43136798431 @default.
- W4313679843 hasOpenAccess W4313679843 @default.
- W4313679843 hasPrimaryLocation W43136798431 @default.
- W4313679843 hasRelatedWork W2052518016 @default.
- W4313679843 hasRelatedWork W2081022503 @default.
- W4313679843 hasRelatedWork W2085956791 @default.
- W4313679843 hasRelatedWork W2283162247 @default.
- W4313679843 hasRelatedWork W2407156159 @default.
- W4313679843 hasRelatedWork W2524507886 @default.
- W4313679843 hasRelatedWork W2767823485 @default.
- W4313679843 hasRelatedWork W2774550181 @default.
- W4313679843 hasRelatedWork W3045606581 @default.
- W4313679843 hasRelatedWork W3082551657 @default.
- W4313679843 isParatext "false" @default.
- W4313679843 isRetracted "false" @default.
- W4313679843 workType "article" @default.