Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313681190> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4313681190 endingPage "126636" @default.
- W4313681190 startingPage "126636" @default.
- W4313681190 abstract "Accurate forecasts of photovoltaic power (PVP) are essential to the production, transmission, and distribution of electricity in power systems. However, PVP output is strongly weather-dependent, and the forecasting of PVP is highly dependent on the quality of numerical weather prediction (NWP) data. In recent years, a huge volume of numerical weather observation (NWO) data which are strongly associated with PVP output have been collected on-site by widely-installed smart meters and sensors. Appropriately utilizing high-fidelity NWO, in addition to low-fidelity NWP, has great potential in promoting the forecasting capability of deep learning (DL) models. Therefore, this paper proposes a cascaded multi-fidelity deep learning (CMF-DL) framework, which is coordinately driven by the data of both NWO and NWP, to deal with the day-ahead PVP forecasting problem. The proposed CMF-DL framework possesses great compatibility, and thus it can be incorporated with various DL models, such as the long short-term memory (LSTM) model and the gated recurrent unit (GRU) model. Subsequently, incorporated with CMF-DL, two newly-developed forecasting models, i.e., CMF-LSTM and CMF-GRU, are proposed, and datasets from a real-life PV plant are utilized, to evaluate the feasibility and effectiveness of the proposed approaches. From the results, the proposed CMF-LSTM and CMF-GRU show greater forecasting capability and anti-noise ability than the basic LSTM and GRU. Both CMF-LSTM and CMF-GRU can accept noisy NWP data with up to 35% errors. Additionally, compared to the persistence model, the forecasting skills of CMF-LSTM and CMF-GRU can be significantly promoted by 39.87% and 44.02%, respectively. The proposed CMF-LSTM and CMF-GRU also achieve better day-ahead PVP forecasting performance than the widely-used reference models in previous works." @default.
- W4313681190 created "2023-01-08" @default.
- W4313681190 creator A5076928257 @default.
- W4313681190 creator A5090508999 @default.
- W4313681190 date "2023-04-01" @default.
- W4313681190 modified "2023-10-15" @default.
- W4313681190 title "A cascaded deep learning framework for photovoltaic power forecasting with multi-fidelity inputs" @default.
- W4313681190 cites W2026844045 @default.
- W4313681190 cites W2080512818 @default.
- W4313681190 cites W2088786192 @default.
- W4313681190 cites W2173259274 @default.
- W4313681190 cites W2590910929 @default.
- W4313681190 cites W2751698537 @default.
- W4313681190 cites W2773629498 @default.
- W4313681190 cites W2889360708 @default.
- W4313681190 cites W2899959398 @default.
- W4313681190 cites W2906239552 @default.
- W4313681190 cites W2980706627 @default.
- W4313681190 cites W3105031020 @default.
- W4313681190 cites W3127890494 @default.
- W4313681190 cites W3133901049 @default.
- W4313681190 cites W3134570487 @default.
- W4313681190 cites W3153010532 @default.
- W4313681190 cites W3165128203 @default.
- W4313681190 cites W3190354123 @default.
- W4313681190 cites W3192801868 @default.
- W4313681190 cites W3193586184 @default.
- W4313681190 cites W3197588786 @default.
- W4313681190 cites W3206725780 @default.
- W4313681190 cites W4200516166 @default.
- W4313681190 cites W4210654500 @default.
- W4313681190 cites W774145425 @default.
- W4313681190 doi "https://doi.org/10.1016/j.energy.2023.126636" @default.
- W4313681190 hasPublicationYear "2023" @default.
- W4313681190 type Work @default.
- W4313681190 citedByCount "2" @default.
- W4313681190 countsByYear W43136811902023 @default.
- W4313681190 crossrefType "journal-article" @default.
- W4313681190 hasAuthorship W4313681190A5076928257 @default.
- W4313681190 hasAuthorship W4313681190A5090508999 @default.
- W4313681190 hasConcept C108583219 @default.
- W4313681190 hasConcept C113364801 @default.
- W4313681190 hasConcept C119599485 @default.
- W4313681190 hasConcept C119857082 @default.
- W4313681190 hasConcept C121332964 @default.
- W4313681190 hasConcept C127413603 @default.
- W4313681190 hasConcept C147947694 @default.
- W4313681190 hasConcept C153294291 @default.
- W4313681190 hasConcept C154945302 @default.
- W4313681190 hasConcept C2776459999 @default.
- W4313681190 hasConcept C41008148 @default.
- W4313681190 hasConcept C41291067 @default.
- W4313681190 hasConcept C67186912 @default.
- W4313681190 hasConcept C76155785 @default.
- W4313681190 hasConcept C77088390 @default.
- W4313681190 hasConceptScore W4313681190C108583219 @default.
- W4313681190 hasConceptScore W4313681190C113364801 @default.
- W4313681190 hasConceptScore W4313681190C119599485 @default.
- W4313681190 hasConceptScore W4313681190C119857082 @default.
- W4313681190 hasConceptScore W4313681190C121332964 @default.
- W4313681190 hasConceptScore W4313681190C127413603 @default.
- W4313681190 hasConceptScore W4313681190C147947694 @default.
- W4313681190 hasConceptScore W4313681190C153294291 @default.
- W4313681190 hasConceptScore W4313681190C154945302 @default.
- W4313681190 hasConceptScore W4313681190C2776459999 @default.
- W4313681190 hasConceptScore W4313681190C41008148 @default.
- W4313681190 hasConceptScore W4313681190C41291067 @default.
- W4313681190 hasConceptScore W4313681190C67186912 @default.
- W4313681190 hasConceptScore W4313681190C76155785 @default.
- W4313681190 hasConceptScore W4313681190C77088390 @default.
- W4313681190 hasFunder F4320318558 @default.
- W4313681190 hasFunder F4320327605 @default.
- W4313681190 hasLocation W43136811901 @default.
- W4313681190 hasOpenAccess W4313681190 @default.
- W4313681190 hasPrimaryLocation W43136811901 @default.
- W4313681190 hasRelatedWork W1997070615 @default.
- W4313681190 hasRelatedWork W2135608140 @default.
- W4313681190 hasRelatedWork W2319626700 @default.
- W4313681190 hasRelatedWork W2347409177 @default.
- W4313681190 hasRelatedWork W2895525995 @default.
- W4313681190 hasRelatedWork W2945374968 @default.
- W4313681190 hasRelatedWork W4293777179 @default.
- W4313681190 hasRelatedWork W4313443006 @default.
- W4313681190 hasRelatedWork W4319589573 @default.
- W4313681190 hasRelatedWork W4385452045 @default.
- W4313681190 hasVolume "268" @default.
- W4313681190 isParatext "false" @default.
- W4313681190 isRetracted "false" @default.
- W4313681190 workType "article" @default.