Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313704016> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4313704016 endingPage "107343" @default.
- W4313704016 startingPage "107343" @default.
- W4313704016 abstract "The morphological examination of bone marrow (BM) cells is essential in both diagnosing and treating various hematologic diseases. However, it is still done manually with a heavy workload. An artificial intelligence-assisted diagnosis support system of BM cells is highly required to reduce the workloads of examiners and improve the reproducibility of the results.In this paper, we proposed an artificial intelligence-assisted diagnosis support system of morphological examination based on bone marrow smears including cells detection, classification and prediction of leukemia types. For cell detection, we trained the novel YOLOX-s model to locate cells precisely and obtain single cell images. For cell classification, we regarded it as a fine- grained classification task and proposed a novel architecture called MLFL-Net utilizing multi-level features. Furthermore, we predicted the leukemia types on a dataset including 40 normal people (BM transplantation donors) and 40 patients of different kinds of acute leukemia according to the World Health Organization (WHO) standard.We constructed a large-scale data set of 11,788 fully-annotated micrographs from 728 smears and 131,300 expert-annotated single cell images. With the data set, the detection model achieved 0.9797 AUC and 4.33% box placement error. For cell classification, the total accuracy of our proposed MLFL-Net reached 89.53% which outperformed all the other related models in identifying cell categories. In the meantime, we took acute leukemia as an example to explore the leukemia types prediction procedure of hematological disease. It generated the same diagnostic prediction as the experts gave for 92.5 percent of the cohort.This Artificial Intelligence-assisted system can be implemented to aid in clinical decision making and accelerate diagnosis. The method will contribute to promote the intelligence and modernization of BM cytomorphology, which has vital significance of the development of the medical career." @default.
- W4313704016 created "2023-01-08" @default.
- W4313704016 creator A5009738000 @default.
- W4313704016 creator A5014068492 @default.
- W4313704016 creator A5040965135 @default.
- W4313704016 creator A5065619529 @default.
- W4313704016 creator A5071438551 @default.
- W4313704016 creator A5073951794 @default.
- W4313704016 date "2023-04-01" @default.
- W4313704016 modified "2023-09-26" @default.
- W4313704016 title "Artificial intelligence-assisted diagnosis of hematologic diseases based on bone marrow smears using deep neural networks" @default.
- W4313704016 cites W2020709044 @default.
- W4313704016 cites W2117333179 @default.
- W4313704016 cites W2310716991 @default.
- W4313704016 cites W2581082771 @default.
- W4313704016 cites W2766094679 @default.
- W4313704016 cites W2789093198 @default.
- W4313704016 cites W2802123610 @default.
- W4313704016 cites W2889326414 @default.
- W4313704016 cites W2891686988 @default.
- W4313704016 cites W2906295032 @default.
- W4313704016 cites W2917675508 @default.
- W4313704016 cites W2975107127 @default.
- W4313704016 cites W2986235590 @default.
- W4313704016 cites W3045866818 @default.
- W4313704016 cites W3194282450 @default.
- W4313704016 cites W3201174862 @default.
- W4313704016 cites W3208224592 @default.
- W4313704016 cites W639708223 @default.
- W4313704016 doi "https://doi.org/10.1016/j.cmpb.2023.107343" @default.
- W4313704016 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36821974" @default.
- W4313704016 hasPublicationYear "2023" @default.
- W4313704016 type Work @default.
- W4313704016 citedByCount "2" @default.
- W4313704016 countsByYear W43137040162023 @default.
- W4313704016 crossrefType "journal-article" @default.
- W4313704016 hasAuthorship W4313704016A5009738000 @default.
- W4313704016 hasAuthorship W4313704016A5014068492 @default.
- W4313704016 hasAuthorship W4313704016A5040965135 @default.
- W4313704016 hasAuthorship W4313704016A5065619529 @default.
- W4313704016 hasAuthorship W4313704016A5071438551 @default.
- W4313704016 hasAuthorship W4313704016A5073951794 @default.
- W4313704016 hasConcept C108583219 @default.
- W4313704016 hasConcept C111919701 @default.
- W4313704016 hasConcept C119857082 @default.
- W4313704016 hasConcept C142724271 @default.
- W4313704016 hasConcept C153180895 @default.
- W4313704016 hasConcept C154945302 @default.
- W4313704016 hasConcept C203014093 @default.
- W4313704016 hasConcept C2778048844 @default.
- W4313704016 hasConcept C2778461978 @default.
- W4313704016 hasConcept C2778476105 @default.
- W4313704016 hasConcept C2780007613 @default.
- W4313704016 hasConcept C2994180119 @default.
- W4313704016 hasConcept C3017819844 @default.
- W4313704016 hasConcept C41008148 @default.
- W4313704016 hasConcept C50644808 @default.
- W4313704016 hasConcept C71924100 @default.
- W4313704016 hasConceptScore W4313704016C108583219 @default.
- W4313704016 hasConceptScore W4313704016C111919701 @default.
- W4313704016 hasConceptScore W4313704016C119857082 @default.
- W4313704016 hasConceptScore W4313704016C142724271 @default.
- W4313704016 hasConceptScore W4313704016C153180895 @default.
- W4313704016 hasConceptScore W4313704016C154945302 @default.
- W4313704016 hasConceptScore W4313704016C203014093 @default.
- W4313704016 hasConceptScore W4313704016C2778048844 @default.
- W4313704016 hasConceptScore W4313704016C2778461978 @default.
- W4313704016 hasConceptScore W4313704016C2778476105 @default.
- W4313704016 hasConceptScore W4313704016C2780007613 @default.
- W4313704016 hasConceptScore W4313704016C2994180119 @default.
- W4313704016 hasConceptScore W4313704016C3017819844 @default.
- W4313704016 hasConceptScore W4313704016C41008148 @default.
- W4313704016 hasConceptScore W4313704016C50644808 @default.
- W4313704016 hasConceptScore W4313704016C71924100 @default.
- W4313704016 hasFunder F4320321921 @default.
- W4313704016 hasLocation W43137040161 @default.
- W4313704016 hasLocation W43137040162 @default.
- W4313704016 hasOpenAccess W4313704016 @default.
- W4313704016 hasPrimaryLocation W43137040161 @default.
- W4313704016 hasRelatedWork W2795261237 @default.
- W4313704016 hasRelatedWork W3014300295 @default.
- W4313704016 hasRelatedWork W3164822677 @default.
- W4313704016 hasRelatedWork W4223943233 @default.
- W4313704016 hasRelatedWork W4225161397 @default.
- W4313704016 hasRelatedWork W4312200629 @default.
- W4313704016 hasRelatedWork W4360585206 @default.
- W4313704016 hasRelatedWork W4364306694 @default.
- W4313704016 hasRelatedWork W4380075502 @default.
- W4313704016 hasRelatedWork W4380086463 @default.
- W4313704016 hasVolume "231" @default.
- W4313704016 isParatext "false" @default.
- W4313704016 isRetracted "false" @default.
- W4313704016 workType "article" @default.