Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313705965> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4313705965 endingPage "110518" @default.
- W4313705965 startingPage "110518" @default.
- W4313705965 abstract "The design process of thin-walled structural members is highly complex due to the possible occurrence of multiple instabilities. This research therefore aimed to develop machine learning algorithms to predict the buckling behaviour of thin-walled channel elements subjected to axial compression or bending. Feed-forward multi-layer Artificial Neural Networks (ANNs) were trained, in which the input variables comprised the cross-sectional dimensions and thickness, the presence/location of intermediate stiffeners, and the element length. The output data consisted of the elastic critical buckling load or moment, while also providing an immediate modal decomposition of the buckled shape into the traditionally defined ‘pure’ buckling mode categories (i.e. local, distortional and global buckling). The sample output for training was prepared using a combination of the Finite Strip Method (FSM) and the Equivalent Nodal Force Method (ENFM). The ANN models were subjected to a K-fold cross-validation technique and the hyperparameters were tuned using a grid search technique. The results indicated that the trained algorithms were capable of predicting the elastic critical buckling loads and carrying out the modal decomposition of the critical buckled shapes with an average accuracy (R2-value) of 98%. The influence of the various channel parameters on the output was assessed using the SHapley Additive exPlanations (SHAP) method." @default.
- W4313705965 created "2023-01-08" @default.
- W4313705965 creator A5002170636 @default.
- W4313705965 creator A5012408730 @default.
- W4313705965 creator A5022793607 @default.
- W4313705965 creator A5033134647 @default.
- W4313705965 date "2023-03-01" @default.
- W4313705965 modified "2023-10-14" @default.
- W4313705965 title "Predicting the buckling behaviour of thin-walled structural elements using machine learning methods" @default.
- W4313705965 cites W1856885250 @default.
- W4313705965 cites W1973979054 @default.
- W4313705965 cites W2006960602 @default.
- W4313705965 cites W2018371935 @default.
- W4313705965 cites W2019278256 @default.
- W4313705965 cites W2019758567 @default.
- W4313705965 cites W2042696077 @default.
- W4313705965 cites W2047749266 @default.
- W4313705965 cites W2057285718 @default.
- W4313705965 cites W2082680979 @default.
- W4313705965 cites W2086795570 @default.
- W4313705965 cites W2126191444 @default.
- W4313705965 cites W2129888542 @default.
- W4313705965 cites W2138021034 @default.
- W4313705965 cites W2917421740 @default.
- W4313705965 cites W2954279923 @default.
- W4313705965 cites W3036390180 @default.
- W4313705965 cites W3099966684 @default.
- W4313705965 cites W3145568218 @default.
- W4313705965 cites W3169865641 @default.
- W4313705965 cites W3174425750 @default.
- W4313705965 cites W3174942219 @default.
- W4313705965 cites W3175716836 @default.
- W4313705965 cites W3177028503 @default.
- W4313705965 cites W3184673931 @default.
- W4313705965 cites W3209059351 @default.
- W4313705965 cites W333311942 @default.
- W4313705965 cites W4286383457 @default.
- W4313705965 cites W2054882140 @default.
- W4313705965 doi "https://doi.org/10.1016/j.tws.2022.110518" @default.
- W4313705965 hasPublicationYear "2023" @default.
- W4313705965 type Work @default.
- W4313705965 citedByCount "1" @default.
- W4313705965 countsByYear W43137059652023 @default.
- W4313705965 crossrefType "journal-article" @default.
- W4313705965 hasAuthorship W4313705965A5002170636 @default.
- W4313705965 hasAuthorship W4313705965A5012408730 @default.
- W4313705965 hasAuthorship W4313705965A5022793607 @default.
- W4313705965 hasAuthorship W4313705965A5033134647 @default.
- W4313705965 hasBestOaLocation W43137059651 @default.
- W4313705965 hasConcept C11413529 @default.
- W4313705965 hasConcept C127413603 @default.
- W4313705965 hasConcept C135628077 @default.
- W4313705965 hasConcept C154945302 @default.
- W4313705965 hasConcept C159985019 @default.
- W4313705965 hasConcept C180016635 @default.
- W4313705965 hasConcept C192562407 @default.
- W4313705965 hasConcept C2777457327 @default.
- W4313705965 hasConcept C41008148 @default.
- W4313705965 hasConcept C50644808 @default.
- W4313705965 hasConcept C66938386 @default.
- W4313705965 hasConcept C71139939 @default.
- W4313705965 hasConcept C85476182 @default.
- W4313705965 hasConceptScore W4313705965C11413529 @default.
- W4313705965 hasConceptScore W4313705965C127413603 @default.
- W4313705965 hasConceptScore W4313705965C135628077 @default.
- W4313705965 hasConceptScore W4313705965C154945302 @default.
- W4313705965 hasConceptScore W4313705965C159985019 @default.
- W4313705965 hasConceptScore W4313705965C180016635 @default.
- W4313705965 hasConceptScore W4313705965C192562407 @default.
- W4313705965 hasConceptScore W4313705965C2777457327 @default.
- W4313705965 hasConceptScore W4313705965C41008148 @default.
- W4313705965 hasConceptScore W4313705965C50644808 @default.
- W4313705965 hasConceptScore W4313705965C66938386 @default.
- W4313705965 hasConceptScore W4313705965C71139939 @default.
- W4313705965 hasConceptScore W4313705965C85476182 @default.
- W4313705965 hasFunder F4320334627 @default.
- W4313705965 hasLocation W43137059651 @default.
- W4313705965 hasLocation W43137059652 @default.
- W4313705965 hasOpenAccess W4313705965 @default.
- W4313705965 hasPrimaryLocation W43137059651 @default.
- W4313705965 hasRelatedWork W1534657818 @default.
- W4313705965 hasRelatedWork W2016724314 @default.
- W4313705965 hasRelatedWork W2028142072 @default.
- W4313705965 hasRelatedWork W2063142187 @default.
- W4313705965 hasRelatedWork W2093801962 @default.
- W4313705965 hasRelatedWork W2550542839 @default.
- W4313705965 hasRelatedWork W2888968085 @default.
- W4313705965 hasRelatedWork W3018005208 @default.
- W4313705965 hasRelatedWork W3084374997 @default.
- W4313705965 hasRelatedWork W3166776618 @default.
- W4313705965 hasVolume "184" @default.
- W4313705965 isParatext "false" @default.
- W4313705965 isRetracted "false" @default.
- W4313705965 workType "article" @default.