Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313706616> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4313706616 endingPage "1415" @default.
- W4313706616 startingPage "1399" @default.
- W4313706616 abstract "SUMMARY Characterizing explosion sources and differentiating between earthquake and underground explosions using distributed seismic networks becomes non-trivial when explosions are detonated in cavities or heterogeneous ground material. Moreover, there is little understanding of how changes in subsurface physical properties affect the far-field waveforms we record and use to infer information about the source. Simulations of underground explosions and the resultant ground motions can be a powerful tool to systematically explore how different subsurface properties affect far-field waveform features, but there are added variables that arise from how we choose to model the explosions that can confound interpretation. To assess how both subsurface properties and algorithmic choices affect the seismic wavefield and the estimated source functions, we ran a series of 2-D axisymmetric non-linear numerical explosion experiments and wave propagation simulations that explore a wide array of parameters. We then inverted the synthetic far-field waveform data using a linear inversion scheme to estimate source–time functions (STFs) for each simulation case. We applied principal component analysis (PCA), an unsupervised machine learning method, to both the far-field waveforms and STFs to identify the most important factors that control variance in the waveform data and differences between cases. For the far-field waveforms, the largest variance occurs in the shallower radial receiver channels in the 0–50 Hz frequency band. For the STFs, both peak amplitude and rise times across different frequencies contribute to the variance. We find that the ground equation of state (i.e. lithology and rheology) and the explosion emplacement conditions (i.e. tamped versus cavity) have the greatest effect on the variance of the far-field waveforms and STFs, with the ground yield strength and fracture pressure being secondary factors. Differences in the PCA results between the far-field waveforms and STFs could possibly be due to near-field non-linearities of the source that are not accounted for in the estimation of STFs and could be associated with yield strength, fracture pressure, cavity radius and cavity shape parameters. Other algorithmic parameters are found to be less important and cause less variance in both the far-field waveforms and STFs, meaning algorithmic choices in how we model explosions are less important, which is encouraging for the further use of explosion simulations to study how physical Earth properties affect seismic waveform features and estimated STFs." @default.
- W4313706616 created "2023-01-08" @default.
- W4313706616 creator A5060698341 @default.
- W4313706616 creator A5079891468 @default.
- W4313706616 creator A5088493036 @default.
- W4313706616 date "2023-01-04" @default.
- W4313706616 modified "2023-09-26" @default.
- W4313706616 title "The influence of physical and algorithmic factors on simulated far-field waveforms and source–time functions of underground explosions using unsupervised machine learning" @default.
- W4313706616 cites W1559773239 @default.
- W4313706616 cites W1965202577 @default.
- W4313706616 cites W1976647390 @default.
- W4313706616 cites W2004823024 @default.
- W4313706616 cites W2024165284 @default.
- W4313706616 cites W2034734598 @default.
- W4313706616 cites W2041961043 @default.
- W4313706616 cites W2042901969 @default.
- W4313706616 cites W2043063141 @default.
- W4313706616 cites W2053504770 @default.
- W4313706616 cites W2058723682 @default.
- W4313706616 cites W2059925175 @default.
- W4313706616 cites W2062331843 @default.
- W4313706616 cites W2071878742 @default.
- W4313706616 cites W2086827153 @default.
- W4313706616 cites W2115061508 @default.
- W4313706616 cites W2139349327 @default.
- W4313706616 cites W2140023168 @default.
- W4313706616 cites W2316564661 @default.
- W4313706616 cites W244979670 @default.
- W4313706616 cites W2468728245 @default.
- W4313706616 cites W2474060327 @default.
- W4313706616 cites W2486909678 @default.
- W4313706616 cites W2730761802 @default.
- W4313706616 cites W2794959893 @default.
- W4313706616 cites W2963181993 @default.
- W4313706616 cites W3012518255 @default.
- W4313706616 cites W3193692163 @default.
- W4313706616 cites W3204555933 @default.
- W4313706616 cites W4213238558 @default.
- W4313706616 cites W4214897893 @default.
- W4313706616 cites W4281562150 @default.
- W4313706616 cites W4282980345 @default.
- W4313706616 cites W4283587137 @default.
- W4313706616 cites W4297234494 @default.
- W4313706616 cites W4298140373 @default.
- W4313706616 doi "https://doi.org/10.1093/gji/ggac510" @default.
- W4313706616 hasPublicationYear "2023" @default.
- W4313706616 type Work @default.
- W4313706616 citedByCount "0" @default.
- W4313706616 crossrefType "journal-article" @default.
- W4313706616 hasAuthorship W4313706616A5060698341 @default.
- W4313706616 hasAuthorship W4313706616A5079891468 @default.
- W4313706616 hasAuthorship W4313706616A5088493036 @default.
- W4313706616 hasBestOaLocation W43137066161 @default.
- W4313706616 hasConcept C11413529 @default.
- W4313706616 hasConcept C121332964 @default.
- W4313706616 hasConcept C127313418 @default.
- W4313706616 hasConcept C165205528 @default.
- W4313706616 hasConcept C197424946 @default.
- W4313706616 hasConcept C202444582 @default.
- W4313706616 hasConcept C24890656 @default.
- W4313706616 hasConcept C33923547 @default.
- W4313706616 hasConcept C41008148 @default.
- W4313706616 hasConcept C554190296 @default.
- W4313706616 hasConcept C76155785 @default.
- W4313706616 hasConcept C9652623 @default.
- W4313706616 hasConceptScore W4313706616C11413529 @default.
- W4313706616 hasConceptScore W4313706616C121332964 @default.
- W4313706616 hasConceptScore W4313706616C127313418 @default.
- W4313706616 hasConceptScore W4313706616C165205528 @default.
- W4313706616 hasConceptScore W4313706616C197424946 @default.
- W4313706616 hasConceptScore W4313706616C202444582 @default.
- W4313706616 hasConceptScore W4313706616C24890656 @default.
- W4313706616 hasConceptScore W4313706616C33923547 @default.
- W4313706616 hasConceptScore W4313706616C41008148 @default.
- W4313706616 hasConceptScore W4313706616C554190296 @default.
- W4313706616 hasConceptScore W4313706616C76155785 @default.
- W4313706616 hasConceptScore W4313706616C9652623 @default.
- W4313706616 hasFunder F4320332369 @default.
- W4313706616 hasIssue "2" @default.
- W4313706616 hasLocation W43137066161 @default.
- W4313706616 hasLocation W43137066162 @default.
- W4313706616 hasOpenAccess W4313706616 @default.
- W4313706616 hasPrimaryLocation W43137066161 @default.
- W4313706616 hasRelatedWork W2004013317 @default.
- W4313706616 hasRelatedWork W2022035173 @default.
- W4313706616 hasRelatedWork W2035325200 @default.
- W4313706616 hasRelatedWork W2039808052 @default.
- W4313706616 hasRelatedWork W2092739438 @default.
- W4313706616 hasRelatedWork W2167517487 @default.
- W4313706616 hasRelatedWork W2355282060 @default.
- W4313706616 hasRelatedWork W2772196783 @default.
- W4313706616 hasRelatedWork W3113596969 @default.
- W4313706616 hasRelatedWork W3141829427 @default.
- W4313706616 hasVolume "233" @default.
- W4313706616 isParatext "false" @default.
- W4313706616 isRetracted "false" @default.
- W4313706616 workType "article" @default.