Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313731037> ?p ?o ?g. }
- W4313731037 endingPage "893" @default.
- W4313731037 startingPage "882" @default.
- W4313731037 abstract "Electrochemical CO2 reduction reaction (CO2RR) is an important process which is a potential way to recycle excessive CO2 in the atmosphere. Although the electrocatalyst is the key toward efficient CO2RR, the progress of discovering effective catalysts is lagging with current methods. Because of the cost and time efficiency of the modern machine learning (ML) algorithm, an increasing number of researchers have applied ML to accelerate the screening of suitable catalysts and to deepen our understanding in the mechanism. Hence, we reviewed recent applications of ML in the research of CO2RR by the types of electrocatalyst. An introduction on the general methodology and a discussion on the pros and cons for such applications are included." @default.
- W4313731037 created "2023-01-08" @default.
- W4313731037 creator A5006577991 @default.
- W4313731037 creator A5047178915 @default.
- W4313731037 creator A5057494616 @default.
- W4313731037 creator A5076699095 @default.
- W4313731037 date "2023-01-08" @default.
- W4313731037 modified "2023-10-05" @default.
- W4313731037 title "Machine Learning Assisted Understanding and Discovery of CO<sub>2</sub> Reduction Reaction Electrocatalyst" @default.
- W4313731037 cites W1976492731 @default.
- W4313731037 cites W1979371521 @default.
- W4313731037 cites W1992985800 @default.
- W4313731037 cites W2202057872 @default.
- W4313731037 cites W2352719088 @default.
- W4313731037 cites W2462003543 @default.
- W4313731037 cites W2522565392 @default.
- W4313731037 cites W2586675271 @default.
- W4313731037 cites W2598674176 @default.
- W4313731037 cites W2731127878 @default.
- W4313731037 cites W2736967576 @default.
- W4313731037 cites W2741906484 @default.
- W4313731037 cites W2759196277 @default.
- W4313731037 cites W2760744264 @default.
- W4313731037 cites W2763833008 @default.
- W4313731037 cites W2766856748 @default.
- W4313731037 cites W2771884484 @default.
- W4313731037 cites W2890961624 @default.
- W4313731037 cites W2917193084 @default.
- W4313731037 cites W2947147416 @default.
- W4313731037 cites W2947264857 @default.
- W4313731037 cites W2951783257 @default.
- W4313731037 cites W2955219525 @default.
- W4313731037 cites W2972593701 @default.
- W4313731037 cites W2999482379 @default.
- W4313731037 cites W3011106738 @default.
- W4313731037 cites W3013161636 @default.
- W4313731037 cites W3025104221 @default.
- W4313731037 cites W3037620337 @default.
- W4313731037 cites W3041228890 @default.
- W4313731037 cites W3046377870 @default.
- W4313731037 cites W3046928081 @default.
- W4313731037 cites W3086801199 @default.
- W4313731037 cites W3091030757 @default.
- W4313731037 cites W3093999435 @default.
- W4313731037 cites W3094777310 @default.
- W4313731037 cites W3096925923 @default.
- W4313731037 cites W3140039882 @default.
- W4313731037 cites W3153857331 @default.
- W4313731037 cites W3155378264 @default.
- W4313731037 cites W3159211981 @default.
- W4313731037 cites W3178652718 @default.
- W4313731037 cites W3179326279 @default.
- W4313731037 cites W3185126092 @default.
- W4313731037 cites W3193713069 @default.
- W4313731037 cites W3206384804 @default.
- W4313731037 cites W3215131576 @default.
- W4313731037 cites W4220985463 @default.
- W4313731037 cites W4221034234 @default.
- W4313731037 cites W4281382652 @default.
- W4313731037 cites W4283332760 @default.
- W4313731037 cites W4286208283 @default.
- W4313731037 cites W4289236186 @default.
- W4313731037 doi "https://doi.org/10.1021/acs.jpcc.2c08343" @default.
- W4313731037 hasPublicationYear "2023" @default.
- W4313731037 type Work @default.
- W4313731037 citedByCount "3" @default.
- W4313731037 countsByYear W43137310372023 @default.
- W4313731037 crossrefType "journal-article" @default.
- W4313731037 hasAuthorship W4313731037A5006577991 @default.
- W4313731037 hasAuthorship W4313731037A5047178915 @default.
- W4313731037 hasAuthorship W4313731037A5057494616 @default.
- W4313731037 hasAuthorship W4313731037A5076699095 @default.
- W4313731037 hasBestOaLocation W43137310371 @default.
- W4313731037 hasConcept C111335779 @default.
- W4313731037 hasConcept C111919701 @default.
- W4313731037 hasConcept C127413603 @default.
- W4313731037 hasConcept C147789679 @default.
- W4313731037 hasConcept C161790260 @default.
- W4313731037 hasConcept C171250308 @default.
- W4313731037 hasConcept C17525397 @default.
- W4313731037 hasConcept C178790620 @default.
- W4313731037 hasConcept C183696295 @default.
- W4313731037 hasConcept C185592680 @default.
- W4313731037 hasConcept C192562407 @default.
- W4313731037 hasConcept C21880701 @default.
- W4313731037 hasConcept C2524010 @default.
- W4313731037 hasConcept C33923547 @default.
- W4313731037 hasConcept C33989665 @default.
- W4313731037 hasConcept C41008148 @default.
- W4313731037 hasConcept C52859227 @default.
- W4313731037 hasConcept C98045186 @default.
- W4313731037 hasConceptScore W4313731037C111335779 @default.
- W4313731037 hasConceptScore W4313731037C111919701 @default.
- W4313731037 hasConceptScore W4313731037C127413603 @default.
- W4313731037 hasConceptScore W4313731037C147789679 @default.
- W4313731037 hasConceptScore W4313731037C161790260 @default.
- W4313731037 hasConceptScore W4313731037C171250308 @default.
- W4313731037 hasConceptScore W4313731037C17525397 @default.