Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313731141> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4313731141 endingPage "100091" @default.
- W4313731141 startingPage "100091" @default.
- W4313731141 abstract "The primary goal of this study is to examine if a convolutional neural network (CNN) can be applied as a diagnostic tool for predicting Alzheimer's Disease (AD) from magnetic resonance imaging (MRI) using the MIRIAD-dataset (Minimal Interval Resonance Imaging in Alzheimer's Disease) from one single central slice of the brain. The MIRIAD dataset contains patients' health records represented by a set of MRI scans of the brain and further diagnostic data. Hyperparameters and configurations of CNNs were optimized to determine the best-performing model. The CNN was implemented in Python with the deep learning library ‘Keras’ using Linux/Ubuntu as the operating system. This study obtained the following best performance metrics for predicting Alzheimer's Disease from MRI with Matthew's Correlation Coefficient (MCC) of 0.77; accuracy of 0.89; F1-score of 0.89; AUC of 0.92. The computational time for the training of a CNN takes less than 30 sec. s with a GPU (graphics processing unit). The prediction takes less than 1 sec. on a standard PC. The study suggests that an axial MRI scan can be used to diagnose if a patient has Alzheimer's Disease with an AUC score of 0.92." @default.
- W4313731141 created "2023-01-08" @default.
- W4313731141 creator A5043867807 @default.
- W4313731141 creator A5051684541 @default.
- W4313731141 date "2023-01-01" @default.
- W4313731141 modified "2023-09-30" @default.
- W4313731141 title "Prediction of Alzheimer's disease from magnetic resonance imaging using a convolutional neural network" @default.
- W4313731141 cites W1847168837 @default.
- W4313731141 cites W2038003677 @default.
- W4313731141 cites W2061567202 @default.
- W4313731141 cites W2091524551 @default.
- W4313731141 cites W2113619522 @default.
- W4313731141 cites W2123957845 @default.
- W4313731141 cites W2748217759 @default.
- W4313731141 cites W2771169143 @default.
- W4313731141 cites W2790012920 @default.
- W4313731141 cites W2805494981 @default.
- W4313731141 cites W2901348195 @default.
- W4313731141 cites W2905035821 @default.
- W4313731141 cites W2906155095 @default.
- W4313731141 cites W3019180786 @default.
- W4313731141 cites W3022315685 @default.
- W4313731141 cites W3034005492 @default.
- W4313731141 cites W3085402642 @default.
- W4313731141 cites W3157072550 @default.
- W4313731141 cites W4230920194 @default.
- W4313731141 cites W4283159685 @default.
- W4313731141 doi "https://doi.org/10.1016/j.ibmed.2023.100091" @default.
- W4313731141 hasPublicationYear "2023" @default.
- W4313731141 type Work @default.
- W4313731141 citedByCount "0" @default.
- W4313731141 crossrefType "journal-article" @default.
- W4313731141 hasAuthorship W4313731141A5043867807 @default.
- W4313731141 hasAuthorship W4313731141A5051684541 @default.
- W4313731141 hasBestOaLocation W43137311411 @default.
- W4313731141 hasConcept C108583219 @default.
- W4313731141 hasConcept C111919701 @default.
- W4313731141 hasConcept C126838900 @default.
- W4313731141 hasConcept C143409427 @default.
- W4313731141 hasConcept C153180895 @default.
- W4313731141 hasConcept C154945302 @default.
- W4313731141 hasConcept C15744967 @default.
- W4313731141 hasConcept C169760540 @default.
- W4313731141 hasConcept C41008148 @default.
- W4313731141 hasConcept C50644808 @default.
- W4313731141 hasConcept C519991488 @default.
- W4313731141 hasConcept C58693492 @default.
- W4313731141 hasConcept C71924100 @default.
- W4313731141 hasConcept C81363708 @default.
- W4313731141 hasConcept C8642999 @default.
- W4313731141 hasConceptScore W4313731141C108583219 @default.
- W4313731141 hasConceptScore W4313731141C111919701 @default.
- W4313731141 hasConceptScore W4313731141C126838900 @default.
- W4313731141 hasConceptScore W4313731141C143409427 @default.
- W4313731141 hasConceptScore W4313731141C153180895 @default.
- W4313731141 hasConceptScore W4313731141C154945302 @default.
- W4313731141 hasConceptScore W4313731141C15744967 @default.
- W4313731141 hasConceptScore W4313731141C169760540 @default.
- W4313731141 hasConceptScore W4313731141C41008148 @default.
- W4313731141 hasConceptScore W4313731141C50644808 @default.
- W4313731141 hasConceptScore W4313731141C519991488 @default.
- W4313731141 hasConceptScore W4313731141C58693492 @default.
- W4313731141 hasConceptScore W4313731141C71924100 @default.
- W4313731141 hasConceptScore W4313731141C81363708 @default.
- W4313731141 hasConceptScore W4313731141C8642999 @default.
- W4313731141 hasLocation W43137311411 @default.
- W4313731141 hasLocation W43137311412 @default.
- W4313731141 hasLocation W43137311413 @default.
- W4313731141 hasOpenAccess W4313731141 @default.
- W4313731141 hasPrimaryLocation W43137311411 @default.
- W4313731141 hasRelatedWork W2731899572 @default.
- W4313731141 hasRelatedWork W2999805992 @default.
- W4313731141 hasRelatedWork W3011074480 @default.
- W4313731141 hasRelatedWork W3116150086 @default.
- W4313731141 hasRelatedWork W3130227562 @default.
- W4313731141 hasRelatedWork W3133861977 @default.
- W4313731141 hasRelatedWork W4200173597 @default.
- W4313731141 hasRelatedWork W4291897433 @default.
- W4313731141 hasRelatedWork W4312417841 @default.
- W4313731141 hasRelatedWork W4321369474 @default.
- W4313731141 hasVolume "7" @default.
- W4313731141 isParatext "false" @default.
- W4313731141 isRetracted "false" @default.
- W4313731141 workType "article" @default.