Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313731672> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4313731672 endingPage "223" @default.
- W4313731672 startingPage "208" @default.
- W4313731672 abstract "Social networking services allow users to communicate with their friends and exchange ideas, photos, and videos that delineate their feelings. Sen- timents are emotions that express a person’s attitude, feelings, and worldview. This raises the possibility of analyzing individual moods and emotions in social network data in order to learn more about people’s inclinations and perspectives when communicating online. Sentiment Analysis is the computational study of opinions, assessments, attitudes, subjectivity, and viewpoints represented in text. The emotive appraisal of a condition is a general evaluation of that condition that may be positive or negative depending on physical or mental reactions. In this paper, we attempt to evaluate tweets that contain both text and emoticons in order to determine whether they are positive or negative. This study looked at XGBoost, LinearSVC, Logistic Regression, and BernoulliNB algorithms, with XGBoost providing the highest accuracy of 87.841%. The paper’s key contribu- tion is the use of the XGBoost model for tweets that include emoticons, which also produced the greatest accuracy." @default.
- W4313731672 created "2023-01-08" @default.
- W4313731672 creator A5019583531 @default.
- W4313731672 creator A5065782098 @default.
- W4313731672 creator A5066091432 @default.
- W4313731672 creator A5074256524 @default.
- W4313731672 date "2023-01-01" @default.
- W4313731672 modified "2023-10-14" @default.
- W4313731672 title "Analysis of Tweets with Emoticons for Sentiment Detection Using Classification Techniques" @default.
- W4313731672 cites W172260869 @default.
- W4313731672 cites W1965606641 @default.
- W4313731672 cites W2025478229 @default.
- W4313731672 cites W2134684245 @default.
- W4313731672 cites W2610136582 @default.
- W4313731672 cites W2766332866 @default.
- W4313731672 cites W2773200982 @default.
- W4313731672 cites W2809356716 @default.
- W4313731672 cites W2883853499 @default.
- W4313731672 cites W2884299195 @default.
- W4313731672 cites W2888192920 @default.
- W4313731672 cites W2958299506 @default.
- W4313731672 cites W2998644122 @default.
- W4313731672 cites W3022229613 @default.
- W4313731672 cites W3033096878 @default.
- W4313731672 cites W3093646867 @default.
- W4313731672 cites W3102476541 @default.
- W4313731672 doi "https://doi.org/10.1007/978-3-031-24848-1_15" @default.
- W4313731672 hasPublicationYear "2023" @default.
- W4313731672 type Work @default.
- W4313731672 citedByCount "0" @default.
- W4313731672 crossrefType "book-chapter" @default.
- W4313731672 hasAuthorship W4313731672A5019583531 @default.
- W4313731672 hasAuthorship W4313731672A5065782098 @default.
- W4313731672 hasAuthorship W4313731672A5066091432 @default.
- W4313731672 hasAuthorship W4313731672A5074256524 @default.
- W4313731672 hasConcept C10138342 @default.
- W4313731672 hasConcept C122980154 @default.
- W4313731672 hasConcept C142362112 @default.
- W4313731672 hasConcept C144024400 @default.
- W4313731672 hasConcept C153349607 @default.
- W4313731672 hasConcept C154945302 @default.
- W4313731672 hasConcept C15744967 @default.
- W4313731672 hasConcept C162324750 @default.
- W4313731672 hasConcept C182306322 @default.
- W4313731672 hasConcept C19165224 @default.
- W4313731672 hasConcept C204321447 @default.
- W4313731672 hasConcept C2776035091 @default.
- W4313731672 hasConcept C2776215170 @default.
- W4313731672 hasConcept C2777438025 @default.
- W4313731672 hasConcept C2988148770 @default.
- W4313731672 hasConcept C41008148 @default.
- W4313731672 hasConcept C4308109 @default.
- W4313731672 hasConcept C66402592 @default.
- W4313731672 hasConcept C77805123 @default.
- W4313731672 hasConceptScore W4313731672C10138342 @default.
- W4313731672 hasConceptScore W4313731672C122980154 @default.
- W4313731672 hasConceptScore W4313731672C142362112 @default.
- W4313731672 hasConceptScore W4313731672C144024400 @default.
- W4313731672 hasConceptScore W4313731672C153349607 @default.
- W4313731672 hasConceptScore W4313731672C154945302 @default.
- W4313731672 hasConceptScore W4313731672C15744967 @default.
- W4313731672 hasConceptScore W4313731672C162324750 @default.
- W4313731672 hasConceptScore W4313731672C182306322 @default.
- W4313731672 hasConceptScore W4313731672C19165224 @default.
- W4313731672 hasConceptScore W4313731672C204321447 @default.
- W4313731672 hasConceptScore W4313731672C2776035091 @default.
- W4313731672 hasConceptScore W4313731672C2776215170 @default.
- W4313731672 hasConceptScore W4313731672C2777438025 @default.
- W4313731672 hasConceptScore W4313731672C2988148770 @default.
- W4313731672 hasConceptScore W4313731672C41008148 @default.
- W4313731672 hasConceptScore W4313731672C4308109 @default.
- W4313731672 hasConceptScore W4313731672C66402592 @default.
- W4313731672 hasConceptScore W4313731672C77805123 @default.
- W4313731672 hasLocation W43137316721 @default.
- W4313731672 hasOpenAccess W4313731672 @default.
- W4313731672 hasPrimaryLocation W43137316721 @default.
- W4313731672 hasRelatedWork W2015067270 @default.
- W4313731672 hasRelatedWork W2029743527 @default.
- W4313731672 hasRelatedWork W2128837546 @default.
- W4313731672 hasRelatedWork W2382384318 @default.
- W4313731672 hasRelatedWork W2385515133 @default.
- W4313731672 hasRelatedWork W3163354919 @default.
- W4313731672 hasRelatedWork W3196055420 @default.
- W4313731672 hasRelatedWork W4313731672 @default.
- W4313731672 hasRelatedWork W4366415418 @default.
- W4313731672 hasRelatedWork W4367856961 @default.
- W4313731672 isParatext "false" @default.
- W4313731672 isRetracted "false" @default.
- W4313731672 workType "book-chapter" @default.