Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313825935> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4313825935 abstract "Emotions are indicators of affective states and play a significant role in human daily life, behavior, and interactions. Giving emotional intelligence to the machines could, for instance, facilitate early detection and prediction of (mental) diseases and symptoms. Electroencephalography (EEG) -based emotion recognition is being widely applied because it measures electrical correlates directly from the brain rather than the indirect measurement of other physiological responses initiated by the brain. The recent development of non-invasive and portable EEG sensors makes it possible to use them in real-time applications. Therefore, this paper presents a real-time emotion classification pipeline, which trains different binary classifiers for the dimensions of Valence and Arousal from an incoming EEG data stream. After achieving a 23.9% (Arousal) and 25.8% (Valence) higher f1-score on the state-of-art AMIGOS dataset, this pipeline was applied to the dataset achieved by an emotion elicitation experimental framework developed within the scope of this thesis. Following two different protocols, 15 participants were recorded using two different consumer-grade EEG devices while watching 16 short emotional videos in a controlled environment. For an immediate label setting, the mean f1-score of 87% and 82% were achieved for Arousal and Valence, respectively. In a live scenario, while continuously being updated on the incoming data stream with delayed labels, the pipeline proved to be fast enough to achieve predictions in real time. However, the significant discrepancy from the readily available labels on the classification scores leads to future work to include more data with frequent delayed labels in the live settings." @default.
- W4313825935 created "2023-01-09" @default.
- W4313825935 creator A5058391738 @default.
- W4313825935 creator A5075323828 @default.
- W4313825935 creator A5078224143 @default.
- W4313825935 date "2023-01-09" @default.
- W4313825935 modified "2023-10-17" @default.
- W4313825935 title "Online Learning for Wearable EEG-based Emotion Classification" @default.
- W4313825935 doi "https://doi.org/10.20944/preprints202301.0156.v1" @default.
- W4313825935 hasPublicationYear "2023" @default.
- W4313825935 type Work @default.
- W4313825935 citedByCount "3" @default.
- W4313825935 countsByYear W43138259352023 @default.
- W4313825935 crossrefType "posted-content" @default.
- W4313825935 hasAuthorship W4313825935A5058391738 @default.
- W4313825935 hasAuthorship W4313825935A5075323828 @default.
- W4313825935 hasAuthorship W4313825935A5078224143 @default.
- W4313825935 hasBestOaLocation W43138259351 @default.
- W4313825935 hasConcept C119857082 @default.
- W4313825935 hasConcept C121332964 @default.
- W4313825935 hasConcept C12267149 @default.
- W4313825935 hasConcept C149635348 @default.
- W4313825935 hasConcept C150594956 @default.
- W4313825935 hasConcept C154945302 @default.
- W4313825935 hasConcept C15744967 @default.
- W4313825935 hasConcept C168900304 @default.
- W4313825935 hasConcept C169760540 @default.
- W4313825935 hasConcept C169900460 @default.
- W4313825935 hasConcept C180747234 @default.
- W4313825935 hasConcept C199360897 @default.
- W4313825935 hasConcept C206310091 @default.
- W4313825935 hasConcept C3020774634 @default.
- W4313825935 hasConcept C36951298 @default.
- W4313825935 hasConcept C41008148 @default.
- W4313825935 hasConcept C43521106 @default.
- W4313825935 hasConcept C522805319 @default.
- W4313825935 hasConcept C62520636 @default.
- W4313825935 hasConcept C66905080 @default.
- W4313825935 hasConceptScore W4313825935C119857082 @default.
- W4313825935 hasConceptScore W4313825935C121332964 @default.
- W4313825935 hasConceptScore W4313825935C12267149 @default.
- W4313825935 hasConceptScore W4313825935C149635348 @default.
- W4313825935 hasConceptScore W4313825935C150594956 @default.
- W4313825935 hasConceptScore W4313825935C154945302 @default.
- W4313825935 hasConceptScore W4313825935C15744967 @default.
- W4313825935 hasConceptScore W4313825935C168900304 @default.
- W4313825935 hasConceptScore W4313825935C169760540 @default.
- W4313825935 hasConceptScore W4313825935C169900460 @default.
- W4313825935 hasConceptScore W4313825935C180747234 @default.
- W4313825935 hasConceptScore W4313825935C199360897 @default.
- W4313825935 hasConceptScore W4313825935C206310091 @default.
- W4313825935 hasConceptScore W4313825935C3020774634 @default.
- W4313825935 hasConceptScore W4313825935C36951298 @default.
- W4313825935 hasConceptScore W4313825935C41008148 @default.
- W4313825935 hasConceptScore W4313825935C43521106 @default.
- W4313825935 hasConceptScore W4313825935C522805319 @default.
- W4313825935 hasConceptScore W4313825935C62520636 @default.
- W4313825935 hasConceptScore W4313825935C66905080 @default.
- W4313825935 hasLocation W43138259351 @default.
- W4313825935 hasLocation W43138259352 @default.
- W4313825935 hasOpenAccess W4313825935 @default.
- W4313825935 hasPrimaryLocation W43138259351 @default.
- W4313825935 hasRelatedWork W2013608943 @default.
- W4313825935 hasRelatedWork W2026281216 @default.
- W4313825935 hasRelatedWork W2087245461 @default.
- W4313825935 hasRelatedWork W2170701947 @default.
- W4313825935 hasRelatedWork W2255294823 @default.
- W4313825935 hasRelatedWork W3173251450 @default.
- W4313825935 hasRelatedWork W4378903606 @default.
- W4313825935 hasRelatedWork W4382195843 @default.
- W4313825935 hasRelatedWork W4385782599 @default.
- W4313825935 hasRelatedWork W4386983308 @default.
- W4313825935 isParatext "false" @default.
- W4313825935 isRetracted "false" @default.
- W4313825935 workType "article" @default.