Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313826087> ?p ?o ?g. }
- W4313826087 abstract "Poor irrigation water quality can mar agricultural productivity. Traditional assessment of irrigation water quality usually requires the computation of various conventional quality parameters, which is often time-consuming and associated with errors during sub-index computation. To overcome this limitation, it becomes critical, therefore, to have a visual assessment of the irrigation water quality and identify the most influential water quality parameters for accurate prediction, management, and sustainability of irrigation water quality. Therefore, in this study, the overlay weighted sum technique was used to generate the irrigation water quality (IWQ) map of the area. The map revealed that 29.2% of the area is suitable for irrigation (low restriction), 41.7% is moderately suitable (moderate restriction); and 29.1% is unsuitable (high restriction), with the irrigation water quality declining towards the central-southeastern direction. Multilayer perceptron artificial neural networks (MLP-ANNs) and multiple linear regression models (MLR) were integrated and validated to predict the IWQ parameters using Cl−, HCO3− SO42−, NO3−, Ca2+, Mg2+, Na+, K+, pH, EC, TH, and TDS as input variables, and MAR, SAR, PI, KR, SSP, and PS as output variables. The two models showed high-performance accuracy based on the results of the coefficient of determination (R2 = 0.513–0.983). Low modeling errors were observed from the results of the sum of square errors (SOSE), relative errors (RE), adjusted R-square (R2adj), and residual plots, further confirming the efficacy of the two models; although the MLP-ANNs showed higher prediction accuracy for R2. Based on the sensitivity analysis of the MLP-ANN model, HCO3, pH, SO4, EC, and Cl were identified to have the greatest influence on the irrigation water quality of the area. This study has shown that the integration of GIS and machine learning can serve as rapid decision-making tools for proper planning and enhanced agricultural productivity." @default.
- W4313826087 created "2023-01-09" @default.
- W4313826087 creator A5058642197 @default.
- W4313826087 date "2023-01-09" @default.
- W4313826087 modified "2023-09-25" @default.
- W4313826087 title "Evaluation and prediction of irrigation water quality of an agricultural district, SE Nigeria: an integrated heuristic GIS-based and machine learning approach" @default.
- W4313826087 cites W1568560596 @default.
- W4313826087 cites W1973448477 @default.
- W4313826087 cites W1974362687 @default.
- W4313826087 cites W1985358478 @default.
- W4313826087 cites W2012232061 @default.
- W4313826087 cites W2043243353 @default.
- W4313826087 cites W2052085091 @default.
- W4313826087 cites W2054185858 @default.
- W4313826087 cites W2060063654 @default.
- W4313826087 cites W2076982464 @default.
- W4313826087 cites W2090091295 @default.
- W4313826087 cites W2092289770 @default.
- W4313826087 cites W2092449075 @default.
- W4313826087 cites W2107009220 @default.
- W4313826087 cites W2125209718 @default.
- W4313826087 cites W2131822674 @default.
- W4313826087 cites W2183709880 @default.
- W4313826087 cites W2288227404 @default.
- W4313826087 cites W2341855900 @default.
- W4313826087 cites W2773213923 @default.
- W4313826087 cites W2783181589 @default.
- W4313826087 cites W2793338318 @default.
- W4313826087 cites W2800604825 @default.
- W4313826087 cites W2810513973 @default.
- W4313826087 cites W2901448577 @default.
- W4313826087 cites W2902327049 @default.
- W4313826087 cites W2923643343 @default.
- W4313826087 cites W2951786796 @default.
- W4313826087 cites W2954091740 @default.
- W4313826087 cites W2981332902 @default.
- W4313826087 cites W2981586399 @default.
- W4313826087 cites W2990513038 @default.
- W4313826087 cites W3014908373 @default.
- W4313826087 cites W3033612851 @default.
- W4313826087 cites W3040491274 @default.
- W4313826087 cites W3044134577 @default.
- W4313826087 cites W3048047262 @default.
- W4313826087 cites W3114537568 @default.
- W4313826087 cites W3119802920 @default.
- W4313826087 cites W3126243869 @default.
- W4313826087 cites W3126567032 @default.
- W4313826087 cites W3157155560 @default.
- W4313826087 cites W3160923177 @default.
- W4313826087 cites W3210637362 @default.
- W4313826087 cites W3211647702 @default.
- W4313826087 cites W3216595893 @default.
- W4313826087 cites W4214599526 @default.
- W4313826087 cites W4214746260 @default.
- W4313826087 cites W4224240233 @default.
- W4313826087 cites W4229499032 @default.
- W4313826087 cites W4241699496 @default.
- W4313826087 cites W4251374465 @default.
- W4313826087 cites W4283714832 @default.
- W4313826087 cites W4283782523 @default.
- W4313826087 cites W4286492737 @default.
- W4313826087 cites W4293100451 @default.
- W4313826087 doi "https://doi.org/10.1007/s11356-022-25119-6" @default.
- W4313826087 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36622603" @default.
- W4313826087 hasPublicationYear "2023" @default.
- W4313826087 type Work @default.
- W4313826087 citedByCount "2" @default.
- W4313826087 countsByYear W43138260872023 @default.
- W4313826087 crossrefType "journal-article" @default.
- W4313826087 hasAuthorship W4313826087A5058642197 @default.
- W4313826087 hasBestOaLocation W43138260872 @default.
- W4313826087 hasConcept C105795698 @default.
- W4313826087 hasConcept C11413529 @default.
- W4313826087 hasConcept C127413603 @default.
- W4313826087 hasConcept C128990827 @default.
- W4313826087 hasConcept C139945424 @default.
- W4313826087 hasConcept C154945302 @default.
- W4313826087 hasConcept C155512373 @default.
- W4313826087 hasConcept C179717631 @default.
- W4313826087 hasConcept C18903297 @default.
- W4313826087 hasConcept C2780797713 @default.
- W4313826087 hasConcept C33923547 @default.
- W4313826087 hasConcept C39432304 @default.
- W4313826087 hasConcept C41008148 @default.
- W4313826087 hasConcept C50644808 @default.
- W4313826087 hasConcept C86803240 @default.
- W4313826087 hasConcept C88463610 @default.
- W4313826087 hasConcept C88862950 @default.
- W4313826087 hasConceptScore W4313826087C105795698 @default.
- W4313826087 hasConceptScore W4313826087C11413529 @default.
- W4313826087 hasConceptScore W4313826087C127413603 @default.
- W4313826087 hasConceptScore W4313826087C128990827 @default.
- W4313826087 hasConceptScore W4313826087C139945424 @default.
- W4313826087 hasConceptScore W4313826087C154945302 @default.
- W4313826087 hasConceptScore W4313826087C155512373 @default.
- W4313826087 hasConceptScore W4313826087C179717631 @default.
- W4313826087 hasConceptScore W4313826087C18903297 @default.
- W4313826087 hasConceptScore W4313826087C2780797713 @default.
- W4313826087 hasConceptScore W4313826087C33923547 @default.
- W4313826087 hasConceptScore W4313826087C39432304 @default.