Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313830024> ?p ?o ?g. }
- W4313830024 endingPage "21" @default.
- W4313830024 startingPage "1" @default.
- W4313830024 abstract "Nowadays, the growth and pervasiveness of Internet of Things (IoT) devices have led to increased attacks by hackers and attackers. On the other hand, using IoT infrastructure in various fields has increased the number of node security breaches, attacks, and anomalies. Therefore, detecting anomalies in IoT devices is vital to reduce attacks and strengthen security. Over the past few years, various research has been conducted in anomaly-based intrusion detection using machine learning and deep learning methods. The biggest challenge in machine learning methods is the inability to extract new features. To do this, researchers use deep learning methods to extract new features that lead to increased accuracy in intrusion detection. There are important unsolved challenges in research, including determining important features in detecting malicious attacks, extracting features from raw network traffic data using deep networks, and insufficient accuracy in detecting attacks against IoT devices. Convolutional neural networks are considered a powerful and reliable method in this field due to the ability to automatically extract features from data and perform faster calculations. This study has designed and implemented the IoT features extraction convolutional neural network called IoTFECNN with hybrid layers for better anomaly detection in the IoT. Moreover, a binary multi-objective enhanced Capuchin Search Algorithm (CSA) called BMECapSA is developed for efficient feature selection. The combination of the IoTFECNN and BMECapSA methods has led to the introduction of a new hybrid method called CNN-BMECapSA-RF. Finally, the proposed method is implemented and tested on two data sets, NSL-KDD and TON-IoT. The results of various experiments exhibit that the proposed method has better results regarding classification criteria compared to existing deep learning and machine learning-based anomaly detection systems. The proposed method has reached 99.99% and 99.85% accuracy by identifying 27% and 44% of the effective features on the TON-IoT and NSL-KDD datasets, respectively." @default.
- W4313830024 created "2023-01-09" @default.
- W4313830024 creator A5009120208 @default.
- W4313830024 creator A5031470719 @default.
- W4313830024 creator A5045252533 @default.
- W4313830024 creator A5057222306 @default.
- W4313830024 date "2023-05-01" @default.
- W4313830024 modified "2023-09-29" @default.
- W4313830024 title "Anomaly-based intrusion detection system in the Internet of Things using a convolutional neural network and multi-objective enhanced Capuchin Search Algorithm" @default.
- W4313830024 cites W2021891618 @default.
- W4313830024 cites W2119159008 @default.
- W4313830024 cites W2167153513 @default.
- W4313830024 cites W2752291283 @default.
- W4313830024 cites W2769396672 @default.
- W4313830024 cites W2892079407 @default.
- W4313830024 cites W2911964244 @default.
- W4313830024 cites W2947978993 @default.
- W4313830024 cites W2981025625 @default.
- W4313830024 cites W2990268365 @default.
- W4313830024 cites W2991140181 @default.
- W4313830024 cites W3000413879 @default.
- W4313830024 cites W3001675796 @default.
- W4313830024 cites W3003685271 @default.
- W4313830024 cites W3005367885 @default.
- W4313830024 cites W3010763821 @default.
- W4313830024 cites W3019959491 @default.
- W4313830024 cites W3026601682 @default.
- W4313830024 cites W3039133387 @default.
- W4313830024 cites W3039274670 @default.
- W4313830024 cites W3040916395 @default.
- W4313830024 cites W3041726771 @default.
- W4313830024 cites W3042921284 @default.
- W4313830024 cites W3044434834 @default.
- W4313830024 cites W3087753814 @default.
- W4313830024 cites W3108615370 @default.
- W4313830024 cites W3110547954 @default.
- W4313830024 cites W3111288713 @default.
- W4313830024 cites W3119918144 @default.
- W4313830024 cites W3120779539 @default.
- W4313830024 cites W3121022046 @default.
- W4313830024 cites W3125345207 @default.
- W4313830024 cites W3134154544 @default.
- W4313830024 cites W3161487928 @default.
- W4313830024 cites W3162956350 @default.
- W4313830024 cites W3164921021 @default.
- W4313830024 cites W3185895012 @default.
- W4313830024 cites W3196743383 @default.
- W4313830024 cites W3199173122 @default.
- W4313830024 cites W3206599325 @default.
- W4313830024 cites W3213418562 @default.
- W4313830024 cites W3213553527 @default.
- W4313830024 cites W3217199278 @default.
- W4313830024 cites W4206440054 @default.
- W4313830024 cites W4212986808 @default.
- W4313830024 doi "https://doi.org/10.1016/j.jpdc.2022.12.009" @default.
- W4313830024 hasPublicationYear "2023" @default.
- W4313830024 type Work @default.
- W4313830024 citedByCount "6" @default.
- W4313830024 countsByYear W43138300242023 @default.
- W4313830024 crossrefType "journal-article" @default.
- W4313830024 hasAuthorship W4313830024A5009120208 @default.
- W4313830024 hasAuthorship W4313830024A5031470719 @default.
- W4313830024 hasAuthorship W4313830024A5045252533 @default.
- W4313830024 hasAuthorship W4313830024A5057222306 @default.
- W4313830024 hasConcept C108583219 @default.
- W4313830024 hasConcept C11413529 @default.
- W4313830024 hasConcept C119857082 @default.
- W4313830024 hasConcept C124101348 @default.
- W4313830024 hasConcept C148483581 @default.
- W4313830024 hasConcept C154945302 @default.
- W4313830024 hasConcept C202444582 @default.
- W4313830024 hasConcept C33923547 @default.
- W4313830024 hasConcept C35525427 @default.
- W4313830024 hasConcept C38652104 @default.
- W4313830024 hasConcept C41008148 @default.
- W4313830024 hasConcept C50644808 @default.
- W4313830024 hasConcept C52622490 @default.
- W4313830024 hasConcept C739882 @default.
- W4313830024 hasConcept C81363708 @default.
- W4313830024 hasConcept C81860439 @default.
- W4313830024 hasConcept C9652623 @default.
- W4313830024 hasConceptScore W4313830024C108583219 @default.
- W4313830024 hasConceptScore W4313830024C11413529 @default.
- W4313830024 hasConceptScore W4313830024C119857082 @default.
- W4313830024 hasConceptScore W4313830024C124101348 @default.
- W4313830024 hasConceptScore W4313830024C148483581 @default.
- W4313830024 hasConceptScore W4313830024C154945302 @default.
- W4313830024 hasConceptScore W4313830024C202444582 @default.
- W4313830024 hasConceptScore W4313830024C33923547 @default.
- W4313830024 hasConceptScore W4313830024C35525427 @default.
- W4313830024 hasConceptScore W4313830024C38652104 @default.
- W4313830024 hasConceptScore W4313830024C41008148 @default.
- W4313830024 hasConceptScore W4313830024C50644808 @default.
- W4313830024 hasConceptScore W4313830024C52622490 @default.
- W4313830024 hasConceptScore W4313830024C739882 @default.
- W4313830024 hasConceptScore W4313830024C81363708 @default.
- W4313830024 hasConceptScore W4313830024C81860439 @default.
- W4313830024 hasConceptScore W4313830024C9652623 @default.