Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313830062> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4313830062 endingPage "107344" @default.
- W4313830062 startingPage "107344" @default.
- W4313830062 abstract "Neurodegenerative diseases are the most frequent age-related diseases. This type of disease, if not discovered in the initial stage, will compromise the quality of life of the affected subject. Thus, a timely diagnosis is of paramount importance. One of the most used tasks from neurologists to detect and determine the severity of the disease is analysing human gait. This work presents the dataset named “Beside Gait” containing timeseries of coordinates of extracted body joints of people with neurodegenerative diseases in various stages of the disease as well as control subjects. In addition, the novel Multi-Speed transformer technique will be presented and benchmarked against several other techniques making use of deep learning and Shallow Learning. The objective is to recognize subjects affected by some form of neurodegenerative disease in early stage using a computer vision technique making use of deep learning that can be integrated into a smartphone app for offline inference with the aim of promptly initiate investigations and treatment to improve the patient's quality of life. The recorded videos were processed, and the skeleton of the person in the video was extracted using pose estimation. The raw time-series coordinates of the joints extracted by the pose estimation algorithm were tested against novel deep neural network architectures and Shallow Learning techniques. In this work, the proposed Multi-Speed Transformer is benchmarked against other deep neural networks such as Temporal Convolutional Neural Networks, Transformers, as well as Shallow Learning techniques making use of feature extraction and different classifiers such as Random Forests, K Nearest Neighbours, Ada Boost, Linear and RBF SVM. The proposed Multi-Speed Transformer architecture has been developed to learn short and long-term patterns to model the various pathological gaits. The Multi-Speed Transformer outperformed all other existing models reaching an accuracy of 96.9%, a sensitivity of 96.9%, a precision of 97.7%, and a specificity of 97.1% in binary classification. The accuracy in multi-class classification for detecting the presence of the disease in various stages is 71.6%, the sensitivity is 67.7%, and the specificity is 71.8%. In addition, tests have also been conducted against two other different activity recognition datasets, namely SHREC and JHMDB, in the exact same conditions. Multi-Speed Transformer has demonstrated to beat always all other tested techniques as well as the techniques reviewed in the state-of-the-art with respectively of accuracy 91.8% and 74%. Having those datasets more than two classes, specificity was not computed. The Multi-Speed Transformer is a valuable technique for neurodegenerative disease assessment through computer vision. In addition, the novel dataset “Beside Gait” here presented is an important starting point for future research work on automatic recognition of neurodegenerative diseases using gait analysis." @default.
- W4313830062 created "2023-01-09" @default.
- W4313830062 creator A5000811181 @default.
- W4313830062 creator A5015410834 @default.
- W4313830062 creator A5038436210 @default.
- W4313830062 creator A5062626549 @default.
- W4313830062 creator A5081134126 @default.
- W4313830062 date "2023-03-01" @default.
- W4313830062 modified "2023-10-11" @default.
- W4313830062 title "Multi-speed transformer network for neurodegenerative disease assessment and activity recognition" @default.
- W4313830062 cites W1814500939 @default.
- W4313830062 cites W2024480775 @default.
- W4313830062 cites W2056132907 @default.
- W4313830062 cites W2293887431 @default.
- W4313830062 cites W2560253279 @default.
- W4313830062 cites W2739915297 @default.
- W4313830062 cites W2807422793 @default.
- W4313830062 cites W2914992758 @default.
- W4313830062 cites W2962730651 @default.
- W4313830062 cites W2978281981 @default.
- W4313830062 cites W3008834654 @default.
- W4313830062 cites W3043044436 @default.
- W4313830062 cites W3092199500 @default.
- W4313830062 cites W3094625321 @default.
- W4313830062 cites W3110484925 @default.
- W4313830062 cites W3118851953 @default.
- W4313830062 cites W3133016770 @default.
- W4313830062 cites W3139161881 @default.
- W4313830062 cites W3154416035 @default.
- W4313830062 cites W3197178316 @default.
- W4313830062 cites W3202535612 @default.
- W4313830062 cites W4200317051 @default.
- W4313830062 cites W4200317238 @default.
- W4313830062 cites W4220733951 @default.
- W4313830062 cites W4226250157 @default.
- W4313830062 cites W4280618780 @default.
- W4313830062 doi "https://doi.org/10.1016/j.cmpb.2023.107344" @default.
- W4313830062 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36706617" @default.
- W4313830062 hasPublicationYear "2023" @default.
- W4313830062 type Work @default.
- W4313830062 citedByCount "3" @default.
- W4313830062 countsByYear W43138300622023 @default.
- W4313830062 crossrefType "journal-article" @default.
- W4313830062 hasAuthorship W4313830062A5000811181 @default.
- W4313830062 hasAuthorship W4313830062A5015410834 @default.
- W4313830062 hasAuthorship W4313830062A5038436210 @default.
- W4313830062 hasAuthorship W4313830062A5062626549 @default.
- W4313830062 hasAuthorship W4313830062A5081134126 @default.
- W4313830062 hasConcept C108583219 @default.
- W4313830062 hasConcept C119599485 @default.
- W4313830062 hasConcept C119857082 @default.
- W4313830062 hasConcept C127413603 @default.
- W4313830062 hasConcept C153180895 @default.
- W4313830062 hasConcept C154945302 @default.
- W4313830062 hasConcept C165801399 @default.
- W4313830062 hasConcept C2776214188 @default.
- W4313830062 hasConcept C41008148 @default.
- W4313830062 hasConcept C50644808 @default.
- W4313830062 hasConcept C52622490 @default.
- W4313830062 hasConcept C66322947 @default.
- W4313830062 hasConcept C81363708 @default.
- W4313830062 hasConceptScore W4313830062C108583219 @default.
- W4313830062 hasConceptScore W4313830062C119599485 @default.
- W4313830062 hasConceptScore W4313830062C119857082 @default.
- W4313830062 hasConceptScore W4313830062C127413603 @default.
- W4313830062 hasConceptScore W4313830062C153180895 @default.
- W4313830062 hasConceptScore W4313830062C154945302 @default.
- W4313830062 hasConceptScore W4313830062C165801399 @default.
- W4313830062 hasConceptScore W4313830062C2776214188 @default.
- W4313830062 hasConceptScore W4313830062C41008148 @default.
- W4313830062 hasConceptScore W4313830062C50644808 @default.
- W4313830062 hasConceptScore W4313830062C52622490 @default.
- W4313830062 hasConceptScore W4313830062C66322947 @default.
- W4313830062 hasConceptScore W4313830062C81363708 @default.
- W4313830062 hasLocation W43138300621 @default.
- W4313830062 hasLocation W43138300622 @default.
- W4313830062 hasOpenAccess W4313830062 @default.
- W4313830062 hasPrimaryLocation W43138300621 @default.
- W4313830062 hasRelatedWork W2279398222 @default.
- W4313830062 hasRelatedWork W2731899572 @default.
- W4313830062 hasRelatedWork W3116150086 @default.
- W4313830062 hasRelatedWork W3133861977 @default.
- W4313830062 hasRelatedWork W3156786002 @default.
- W4313830062 hasRelatedWork W4200173597 @default.
- W4313830062 hasRelatedWork W4299822940 @default.
- W4313830062 hasRelatedWork W4312417841 @default.
- W4313830062 hasRelatedWork W4321369474 @default.
- W4313830062 hasRelatedWork W4366492315 @default.
- W4313830062 hasVolume "230" @default.
- W4313830062 isParatext "false" @default.
- W4313830062 isRetracted "false" @default.
- W4313830062 workType "article" @default.