Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313837517> ?p ?o ?g. }
- W4313837517 endingPage "105664" @default.
- W4313837517 startingPage "105664" @default.
- W4313837517 abstract "Despite significant improvements in terms of the predictive ability of Quantitative Computed Tomography based Finite Element (QCT-FE) models in estimating femoral strength (fracture load and stiffness), no substantial clinical adoption of this method has taken place to date. Narrowing the wide variability of FE results by standardizing the methodology and validation protocols, as well as reducing the uncertainties in the FEA process have been proposed as routes towards improved reliability. The aim of this study was to: First, validate a QCT-FE model of proximal femoral stiffness in multiple stance load cases, and second, using a parametric approach, determine the influence of select experimental and modeling parameters on the predictive ability of our model. Ten fresh frozen human femoral samples were tested in neutral stance, 15° adducted and 15° abducted load cases. Voxel-based linear-elastic QCT-FE models of the samples were generated to predict the models' stiffness values in all load cases. The base FE models were validated against the experimental results using linear regression. Thirty six deviated models were created using the minimum and maximum values of experiment-based plausible range for 18 parameters in 4 categories of embedding, loading, material, and segmentation. The predictive ability of the models were compared in terms of the coefficient of determination (R2) of the linear regression between the measured and predicted stiffness values in all load cases. Our model was capable of capturing 90% of the variation in the experimental stiffness of the samples in neutral stance position (R2 = 0.9, concordance correlation coefficient (CCC) = 0.93, percent root mean squared error (RMSE%) = 8.4%, slope and intercept not significantly different from unity and zero, respectively). Embedding and loading categories strongly affected the predictive ability of the models with an average percent difference in R2 of 4.36% ± 2.77 and 2.96% ± 1.69 for the stance-neutral load case, respectively. The performance of the models were significantly different in adducted and abducted load cases with their R2 dropping to 71% and 70%, respectively. Similarly, off-axes load cases were affected by the parameters differently compared to the neutral load case, with the loading parameter category imposing more than 10% difference on their R2, larger than all other categories. We also showed that automatically selecting the best performing plausible value for each parameter and each sample would result in a perfectly linear correlation (R2> 0.99) between the tuned model's predicted stiffness and experimental results. Based on our results, high sensitivity of the model performance to experimental parameters requires extra diligence in modeling the embedding geometry and the loading angles since these sources of uncertainty could dwarf the effects of material modeling and image processing parameters. The results of this study could help in improving the robustness of the QCT-FE models of proximal femur by limiting the uncertainties in the experimental and modeling steps." @default.
- W4313837517 created "2023-01-09" @default.
- W4313837517 creator A5028958795 @default.
- W4313837517 creator A5040691815 @default.
- W4313837517 creator A5044304481 @default.
- W4313837517 creator A5064139396 @default.
- W4313837517 creator A5073545180 @default.
- W4313837517 date "2023-03-01" @default.
- W4313837517 modified "2023-09-30" @default.
- W4313837517 title "The predictive ability of a QCT-FE model of the proximal femoral stiffness under multiple load cases is strongly influenced by experimental uncertainties" @default.
- W4313837517 cites W1983023120 @default.
- W4313837517 cites W1993071811 @default.
- W4313837517 cites W2000795177 @default.
- W4313837517 cites W2012596468 @default.
- W4313837517 cites W2019557602 @default.
- W4313837517 cites W2026616100 @default.
- W4313837517 cites W2027465563 @default.
- W4313837517 cites W2043858662 @default.
- W4313837517 cites W2055940634 @default.
- W4313837517 cites W2114550648 @default.
- W4313837517 cites W2189473596 @default.
- W4313837517 cites W2383511485 @default.
- W4313837517 cites W2416259076 @default.
- W4313837517 cites W2520591721 @default.
- W4313837517 cites W2545315746 @default.
- W4313837517 cites W2766905715 @default.
- W4313837517 cites W2771334500 @default.
- W4313837517 cites W2773766539 @default.
- W4313837517 cites W2792085762 @default.
- W4313837517 cites W2793117683 @default.
- W4313837517 cites W2797796709 @default.
- W4313837517 cites W2800382227 @default.
- W4313837517 cites W2866313777 @default.
- W4313837517 cites W2903040605 @default.
- W4313837517 cites W2942463892 @default.
- W4313837517 cites W2944329259 @default.
- W4313837517 cites W2946772427 @default.
- W4313837517 cites W2949402525 @default.
- W4313837517 cites W2997601200 @default.
- W4313837517 cites W2999591953 @default.
- W4313837517 cites W3000050577 @default.
- W4313837517 cites W3040881603 @default.
- W4313837517 cites W3081788694 @default.
- W4313837517 cites W3093416284 @default.
- W4313837517 cites W3199994534 @default.
- W4313837517 cites W4200104764 @default.
- W4313837517 cites W4229456884 @default.
- W4313837517 cites W4229860410 @default.
- W4313837517 doi "https://doi.org/10.1016/j.jmbbm.2023.105664" @default.
- W4313837517 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36657193" @default.
- W4313837517 hasPublicationYear "2023" @default.
- W4313837517 type Work @default.
- W4313837517 citedByCount "0" @default.
- W4313837517 crossrefType "journal-article" @default.
- W4313837517 hasAuthorship W4313837517A5028958795 @default.
- W4313837517 hasAuthorship W4313837517A5040691815 @default.
- W4313837517 hasAuthorship W4313837517A5044304481 @default.
- W4313837517 hasAuthorship W4313837517A5064139396 @default.
- W4313837517 hasAuthorship W4313837517A5073545180 @default.
- W4313837517 hasBestOaLocation W43138375171 @default.
- W4313837517 hasConcept C105795698 @default.
- W4313837517 hasConcept C117251300 @default.
- W4313837517 hasConcept C127413603 @default.
- W4313837517 hasConcept C134018914 @default.
- W4313837517 hasConcept C135628077 @default.
- W4313837517 hasConcept C136229726 @default.
- W4313837517 hasConcept C154020017 @default.
- W4313837517 hasConcept C159985019 @default.
- W4313837517 hasConcept C163175372 @default.
- W4313837517 hasConcept C192562407 @default.
- W4313837517 hasConcept C204323151 @default.
- W4313837517 hasConcept C2776541429 @default.
- W4313837517 hasConcept C2777425516 @default.
- W4313837517 hasConcept C2779329777 @default.
- W4313837517 hasConcept C2779372316 @default.
- W4313837517 hasConcept C2780092901 @default.
- W4313837517 hasConcept C33923547 @default.
- W4313837517 hasConcept C48921125 @default.
- W4313837517 hasConcept C66938386 @default.
- W4313837517 hasConcept C71924100 @default.
- W4313837517 hasConceptScore W4313837517C105795698 @default.
- W4313837517 hasConceptScore W4313837517C117251300 @default.
- W4313837517 hasConceptScore W4313837517C127413603 @default.
- W4313837517 hasConceptScore W4313837517C134018914 @default.
- W4313837517 hasConceptScore W4313837517C135628077 @default.
- W4313837517 hasConceptScore W4313837517C136229726 @default.
- W4313837517 hasConceptScore W4313837517C154020017 @default.
- W4313837517 hasConceptScore W4313837517C159985019 @default.
- W4313837517 hasConceptScore W4313837517C163175372 @default.
- W4313837517 hasConceptScore W4313837517C192562407 @default.
- W4313837517 hasConceptScore W4313837517C204323151 @default.
- W4313837517 hasConceptScore W4313837517C2776541429 @default.
- W4313837517 hasConceptScore W4313837517C2777425516 @default.
- W4313837517 hasConceptScore W4313837517C2779329777 @default.
- W4313837517 hasConceptScore W4313837517C2779372316 @default.
- W4313837517 hasConceptScore W4313837517C2780092901 @default.
- W4313837517 hasConceptScore W4313837517C33923547 @default.
- W4313837517 hasConceptScore W4313837517C48921125 @default.