Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313854562> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4313854562 abstract "Deep neural networks (DNNs) have attained the maximum performance today not just for human pose estimation but also for other machine vision applications (e.g., semantic segmentation, object detection, image classification). Besides, the Transformer shows its good performance for extracting the information in temporal information for video challenges. As a result, the combination of deep learner and transformer gains a better performance than only the utility one, especially for 3D human pose estimation. At the start point, input the 2D key point into the deep learner layer and transformer and then use the additional function to combine the extracted information. Finally, the network collects more data in terms of using the fully connected layer to generate the 3D human pose which makes the result increased precision efficiency. Our research would also reveal the relationship between the use of the deep learner and transformer. When compared to the baseline-DNNs, the suggested architecture outperforms the baseline-DNNs average error under Protocol 1 and Protocol 2 in the Human3.6M dataset, which is now available as a popular dataset for 3D human pose estimation." @default.
- W4313854562 created "2023-01-10" @default.
- W4313854562 creator A5044448641 @default.
- W4313854562 creator A5057436905 @default.
- W4313854562 creator A5060222649 @default.
- W4313854562 creator A5079734356 @default.
- W4313854562 date "2022-11-27" @default.
- W4313854562 modified "2023-09-24" @default.
- W4313854562 title "Combination of Deep Learner Network and Transformer for 3D Human Pose Estimation" @default.
- W4313854562 cites W1602182271 @default.
- W4313854562 cites W2103388129 @default.
- W4313854562 cites W2307770531 @default.
- W4313854562 cites W2382036597 @default.
- W4313854562 cites W2583372902 @default.
- W4313854562 cites W2612706635 @default.
- W4313854562 cites W2795089319 @default.
- W4313854562 cites W2798646183 @default.
- W4313854562 cites W2916798096 @default.
- W4313854562 cites W2962896489 @default.
- W4313854562 cites W2963402313 @default.
- W4313854562 cites W2964304707 @default.
- W4313854562 cites W2968459013 @default.
- W4313854562 cites W2972662547 @default.
- W4313854562 cites W2998273692 @default.
- W4313854562 cites W3034581612 @default.
- W4313854562 cites W3035416506 @default.
- W4313854562 cites W3097623574 @default.
- W4313854562 cites W3109689451 @default.
- W4313854562 doi "https://doi.org/10.23919/iccas55662.2022.10003954" @default.
- W4313854562 hasPublicationYear "2022" @default.
- W4313854562 type Work @default.
- W4313854562 citedByCount "0" @default.
- W4313854562 crossrefType "proceedings-article" @default.
- W4313854562 hasAuthorship W4313854562A5044448641 @default.
- W4313854562 hasAuthorship W4313854562A5057436905 @default.
- W4313854562 hasAuthorship W4313854562A5060222649 @default.
- W4313854562 hasAuthorship W4313854562A5079734356 @default.
- W4313854562 hasConcept C108583219 @default.
- W4313854562 hasConcept C119599485 @default.
- W4313854562 hasConcept C119857082 @default.
- W4313854562 hasConcept C127413603 @default.
- W4313854562 hasConcept C153180895 @default.
- W4313854562 hasConcept C154945302 @default.
- W4313854562 hasConcept C165801399 @default.
- W4313854562 hasConcept C2776151529 @default.
- W4313854562 hasConcept C2984842247 @default.
- W4313854562 hasConcept C31972630 @default.
- W4313854562 hasConcept C41008148 @default.
- W4313854562 hasConcept C50644808 @default.
- W4313854562 hasConcept C52102323 @default.
- W4313854562 hasConcept C66322947 @default.
- W4313854562 hasConcept C89600930 @default.
- W4313854562 hasConceptScore W4313854562C108583219 @default.
- W4313854562 hasConceptScore W4313854562C119599485 @default.
- W4313854562 hasConceptScore W4313854562C119857082 @default.
- W4313854562 hasConceptScore W4313854562C127413603 @default.
- W4313854562 hasConceptScore W4313854562C153180895 @default.
- W4313854562 hasConceptScore W4313854562C154945302 @default.
- W4313854562 hasConceptScore W4313854562C165801399 @default.
- W4313854562 hasConceptScore W4313854562C2776151529 @default.
- W4313854562 hasConceptScore W4313854562C2984842247 @default.
- W4313854562 hasConceptScore W4313854562C31972630 @default.
- W4313854562 hasConceptScore W4313854562C41008148 @default.
- W4313854562 hasConceptScore W4313854562C50644808 @default.
- W4313854562 hasConceptScore W4313854562C52102323 @default.
- W4313854562 hasConceptScore W4313854562C66322947 @default.
- W4313854562 hasConceptScore W4313854562C89600930 @default.
- W4313854562 hasFunder F4320320671 @default.
- W4313854562 hasLocation W43138545621 @default.
- W4313854562 hasOpenAccess W4313854562 @default.
- W4313854562 hasPrimaryLocation W43138545621 @default.
- W4313854562 hasRelatedWork W1721780360 @default.
- W4313854562 hasRelatedWork W2004370856 @default.
- W4313854562 hasRelatedWork W2011792403 @default.
- W4313854562 hasRelatedWork W2039154422 @default.
- W4313854562 hasRelatedWork W2064877078 @default.
- W4313854562 hasRelatedWork W2613186388 @default.
- W4313854562 hasRelatedWork W2739874619 @default.
- W4313854562 hasRelatedWork W2772397313 @default.
- W4313854562 hasRelatedWork W3115178140 @default.
- W4313854562 hasRelatedWork W2187221949 @default.
- W4313854562 isParatext "false" @default.
- W4313854562 isRetracted "false" @default.
- W4313854562 workType "article" @default.