Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313854818> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W4313854818 abstract "This paper is dedicated to the study of the kernel of the compact motivization functor $M_{k}^c:SH^c(k)to DM^c(k)$ (i.e., we try to describe those compact objects of $SH(k)$ whose associated motives vanish. Moreover, we study the question when the $m$-connectivity of $M^c_{k}(E)$ ensures the $m$-connectivity of $E$ itself (with respect to the corresponding homotopy t-structures). We prove that the kernel of $M_{k}^c$ vanishes and the corresponding connectivity detection statement is also valid if and only if $k$ is a non-orderable field; this is an easy consequence of the corresponding results of T. Bachmann (who considered the case where the $2$-adic cohomological dimension of $k$ is finite). We also sketch a deduction of these statements from the slice-convergence results of M. Levine. Moreover, for a general $k$ we prove that this kernel does not contain any $2$-torsion; the author also suspects that all its elements are odd torsion. Besides we prove that the kernel in question consists exactly of infinitely effective (in the sense of Voevodsky's slice filtration) objects of $SH^c(k)$ (assuming that the exponential characteristic of $k$ is inverted in the coefficient ring). These result allow (following another idea of Bachmann) to carry over his results on the tensor invertibility of certain motives of affine quadrics to the corresponding motivic spectra whenever $k$ is non-orderable. We also generalize a theorem of A. Asok." @default.
- W4313854818 created "2023-01-10" @default.
- W4313854818 creator A5054499493 @default.
- W4313854818 date "2016-02-14" @default.
- W4313854818 modified "2023-10-14" @default.
- W4313854818 title "On infinite effectivity of motivic spectra and the vanishing of their motives" @default.
- W4313854818 doi "https://doi.org/10.48550/arxiv.1602.04477" @default.
- W4313854818 hasPublicationYear "2016" @default.
- W4313854818 type Work @default.
- W4313854818 citedByCount "0" @default.
- W4313854818 crossrefType "posted-content" @default.
- W4313854818 hasAuthorship W4313854818A5054499493 @default.
- W4313854818 hasBestOaLocation W43138548181 @default.
- W4313854818 hasConcept C114614502 @default.
- W4313854818 hasConcept C141071460 @default.
- W4313854818 hasConcept C156772000 @default.
- W4313854818 hasConcept C178609977 @default.
- W4313854818 hasConcept C202444582 @default.
- W4313854818 hasConcept C33923547 @default.
- W4313854818 hasConcept C71924100 @default.
- W4313854818 hasConcept C77461463 @default.
- W4313854818 hasConcept C78606066 @default.
- W4313854818 hasConceptScore W4313854818C114614502 @default.
- W4313854818 hasConceptScore W4313854818C141071460 @default.
- W4313854818 hasConceptScore W4313854818C156772000 @default.
- W4313854818 hasConceptScore W4313854818C178609977 @default.
- W4313854818 hasConceptScore W4313854818C202444582 @default.
- W4313854818 hasConceptScore W4313854818C33923547 @default.
- W4313854818 hasConceptScore W4313854818C71924100 @default.
- W4313854818 hasConceptScore W4313854818C77461463 @default.
- W4313854818 hasConceptScore W4313854818C78606066 @default.
- W4313854818 hasLocation W43138548181 @default.
- W4313854818 hasOpenAccess W4313854818 @default.
- W4313854818 hasPrimaryLocation W43138548181 @default.
- W4313854818 hasRelatedWork W1996333803 @default.
- W4313854818 hasRelatedWork W2021915098 @default.
- W4313854818 hasRelatedWork W2037697064 @default.
- W4313854818 hasRelatedWork W2066604542 @default.
- W4313854818 hasRelatedWork W2115312502 @default.
- W4313854818 hasRelatedWork W2165986557 @default.
- W4313854818 hasRelatedWork W2234982114 @default.
- W4313854818 hasRelatedWork W2526928619 @default.
- W4313854818 hasRelatedWork W2962931714 @default.
- W4313854818 hasRelatedWork W4249632018 @default.
- W4313854818 isParatext "false" @default.
- W4313854818 isRetracted "false" @default.
- W4313854818 workType "article" @default.