Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313854925> ?p ?o ?g. }
- W4313854925 endingPage "110102" @default.
- W4313854925 startingPage "110102" @default.
- W4313854925 abstract "To ensure the reliable use and maintenance of a washing machine, condition monitoring and detection of anomalous operations at an early stage are necessary. In this study, we propose a deep neural network architecture for the detection of anomalies in a washing machine based on the noise spectra generated during its operation. Although several self-supervised learning techniques have been developed for the efficient training of an anomaly detection model using only normal data, high diversity in operational noise depending on operating conditions such as laundry weight and imbalance makes anomaly detection in a washing machine difficult. To build a deep neural network model that understands the context of washing conditions and actions, we develop architectures that utilize two types of operational information provided by a washing machine: the spin speed of the drum and laundry weight information. The main self-supervision task of the proposed architecture is to predict the future noise spectrum from the past spectra. However, to utilize the operational information, we investigate two different architectures: one that uses the operational information as a conditioning input to the main task and another that uses it as a secondary objective for a multitask model. Through a cross-validation test with various cloth types and weights, we demonstrate that the proposed architectures can be generalized to various washing machine data and can robustly detect anomalies, even for cloth types unseen during the training stage." @default.
- W4313854925 created "2023-01-10" @default.
- W4313854925 creator A5002212089 @default.
- W4313854925 creator A5004015432 @default.
- W4313854925 creator A5007609195 @default.
- W4313854925 creator A5032652883 @default.
- W4313854925 creator A5034531593 @default.
- W4313854925 date "2023-04-01" @default.
- W4313854925 modified "2023-10-04" @default.
- W4313854925 title "Noise-based self-supervised anomaly detection in washing machines using a deep neural network with operational information" @default.
- W4313854925 cites W1992301222 @default.
- W4313854925 cites W2122646361 @default.
- W4313854925 cites W2137560901 @default.
- W4313854925 cites W2155653793 @default.
- W4313854925 cites W2317595875 @default.
- W4313854925 cites W2461729787 @default.
- W4313854925 cites W2556013418 @default.
- W4313854925 cites W2731372149 @default.
- W4313854925 cites W2763583057 @default.
- W4313854925 cites W2767031373 @default.
- W4313854925 cites W2768753204 @default.
- W4313854925 cites W2794081072 @default.
- W4313854925 cites W2798089113 @default.
- W4313854925 cites W2808496542 @default.
- W4313854925 cites W2898375427 @default.
- W4313854925 cites W2939535241 @default.
- W4313854925 cites W2969736276 @default.
- W4313854925 cites W2982294822 @default.
- W4313854925 cites W3020886907 @default.
- W4313854925 cites W3024781379 @default.
- W4313854925 cites W3036798749 @default.
- W4313854925 cites W3116400523 @default.
- W4313854925 cites W3126112003 @default.
- W4313854925 cites W3128453436 @default.
- W4313854925 cites W3135550350 @default.
- W4313854925 cites W3158868365 @default.
- W4313854925 cites W3167996502 @default.
- W4313854925 cites W3215542913 @default.
- W4313854925 cites W4213416527 @default.
- W4313854925 cites W4221140395 @default.
- W4313854925 doi "https://doi.org/10.1016/j.ymssp.2023.110102" @default.
- W4313854925 hasPublicationYear "2023" @default.
- W4313854925 type Work @default.
- W4313854925 citedByCount "2" @default.
- W4313854925 countsByYear W43138549252023 @default.
- W4313854925 crossrefType "journal-article" @default.
- W4313854925 hasAuthorship W4313854925A5002212089 @default.
- W4313854925 hasAuthorship W4313854925A5004015432 @default.
- W4313854925 hasAuthorship W4313854925A5007609195 @default.
- W4313854925 hasAuthorship W4313854925A5032652883 @default.
- W4313854925 hasAuthorship W4313854925A5034531593 @default.
- W4313854925 hasConcept C115961682 @default.
- W4313854925 hasConcept C119857082 @default.
- W4313854925 hasConcept C127413603 @default.
- W4313854925 hasConcept C151730666 @default.
- W4313854925 hasConcept C153180895 @default.
- W4313854925 hasConcept C154945302 @default.
- W4313854925 hasConcept C201995342 @default.
- W4313854925 hasConcept C2778585658 @default.
- W4313854925 hasConcept C2779343474 @default.
- W4313854925 hasConcept C2780451532 @default.
- W4313854925 hasConcept C41008148 @default.
- W4313854925 hasConcept C50644808 @default.
- W4313854925 hasConcept C548081761 @default.
- W4313854925 hasConcept C739882 @default.
- W4313854925 hasConcept C86803240 @default.
- W4313854925 hasConcept C99498987 @default.
- W4313854925 hasConceptScore W4313854925C115961682 @default.
- W4313854925 hasConceptScore W4313854925C119857082 @default.
- W4313854925 hasConceptScore W4313854925C127413603 @default.
- W4313854925 hasConceptScore W4313854925C151730666 @default.
- W4313854925 hasConceptScore W4313854925C153180895 @default.
- W4313854925 hasConceptScore W4313854925C154945302 @default.
- W4313854925 hasConceptScore W4313854925C201995342 @default.
- W4313854925 hasConceptScore W4313854925C2778585658 @default.
- W4313854925 hasConceptScore W4313854925C2779343474 @default.
- W4313854925 hasConceptScore W4313854925C2780451532 @default.
- W4313854925 hasConceptScore W4313854925C41008148 @default.
- W4313854925 hasConceptScore W4313854925C50644808 @default.
- W4313854925 hasConceptScore W4313854925C548081761 @default.
- W4313854925 hasConceptScore W4313854925C739882 @default.
- W4313854925 hasConceptScore W4313854925C86803240 @default.
- W4313854925 hasConceptScore W4313854925C99498987 @default.
- W4313854925 hasLocation W43138549251 @default.
- W4313854925 hasOpenAccess W4313854925 @default.
- W4313854925 hasPrimaryLocation W43138549251 @default.
- W4313854925 hasRelatedWork W2076520961 @default.
- W4313854925 hasRelatedWork W2158737914 @default.
- W4313854925 hasRelatedWork W2899084033 @default.
- W4313854925 hasRelatedWork W2961085424 @default.
- W4313854925 hasRelatedWork W3046775127 @default.
- W4313854925 hasRelatedWork W4285260836 @default.
- W4313854925 hasRelatedWork W4286629047 @default.
- W4313854925 hasRelatedWork W4306321456 @default.
- W4313854925 hasRelatedWork W4306674287 @default.
- W4313854925 hasRelatedWork W4224009465 @default.
- W4313854925 hasVolume "189" @default.
- W4313854925 isParatext "false" @default.