Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313856035> ?p ?o ?g. }
- W4313856035 endingPage "366" @default.
- W4313856035 startingPage "357" @default.
- W4313856035 abstract "Machine learning models (MLMs) were developed to predict saturated hydraulic conductivity of compacted soil barriers and help to identify appropriate soils for the construction of landfill liners and covers. Data from hydraulic conductivity tests on compacted soil barriers were collected from the literature and compiled into a database for MLM construction. The database contains 329 records of hydraulic conductivity tests associated with 12 selected impact factors covering physical properties, compaction efforts, and hydration and mineralogy behaviors of compacted soil barriers. Three machine learning algorithms (random forest, gradient boosting decision tree, and neural network) were used to develop MLMs, and a statistical technique (multiple linear regression) was used to compare the precision of predictions with the MLMs. Results from this study showed that the random forest model provided the best prediction of the hydraulic conductivity of compacted soil barriers, with 100% of predicted hydraulic conductivity within 100-time differences to measured hydraulic conductivity and 93% within 10-time differences. Feature importance analysis showed that void ratio after compaction, fines content, specific gravity, degree of saturation after compaction, and plasticity index of soils are the top-five factors (in descending order) that influence the hydraulic conductivity of compacted soil barriers and are recommended for a precise prediction. Three predictive MLMs were created for industries as simple tools to screen the soils prior to the construction of compacted soil barriers in landfill liners and covers." @default.
- W4313856035 created "2023-01-10" @default.
- W4313856035 creator A5000391729 @default.
- W4313856035 creator A5001696671 @default.
- W4313856035 creator A5032512373 @default.
- W4313856035 creator A5068013463 @default.
- W4313856035 creator A5078206008 @default.
- W4313856035 creator A5084060177 @default.
- W4313856035 date "2023-02-01" @default.
- W4313856035 modified "2023-10-01" @default.
- W4313856035 title "Predicting the hydraulic conductivity of compacted soil barriers in landfills using machine learning techniques" @default.
- W4313856035 cites W1748600141 @default.
- W4313856035 cites W1973028122 @default.
- W4313856035 cites W1979429326 @default.
- W4313856035 cites W1987552279 @default.
- W4313856035 cites W1996965565 @default.
- W4313856035 cites W2001033088 @default.
- W4313856035 cites W2013690727 @default.
- W4313856035 cites W2014318449 @default.
- W4313856035 cites W2034560957 @default.
- W4313856035 cites W2037933721 @default.
- W4313856035 cites W2038781005 @default.
- W4313856035 cites W2040686142 @default.
- W4313856035 cites W2055467911 @default.
- W4313856035 cites W2055731136 @default.
- W4313856035 cites W2057688288 @default.
- W4313856035 cites W2070493638 @default.
- W4313856035 cites W2071285358 @default.
- W4313856035 cites W2071528310 @default.
- W4313856035 cites W2081744430 @default.
- W4313856035 cites W2108604074 @default.
- W4313856035 cites W2134302486 @default.
- W4313856035 cites W2135971719 @default.
- W4313856035 cites W2153287039 @default.
- W4313856035 cites W2157717602 @default.
- W4313856035 cites W2162397583 @default.
- W4313856035 cites W2191685429 @default.
- W4313856035 cites W2342704317 @default.
- W4313856035 cites W2345884771 @default.
- W4313856035 cites W2415810710 @default.
- W4313856035 cites W2465821586 @default.
- W4313856035 cites W2470861207 @default.
- W4313856035 cites W2737061400 @default.
- W4313856035 cites W2773075090 @default.
- W4313856035 cites W2802269542 @default.
- W4313856035 cites W2911964244 @default.
- W4313856035 cites W2915581989 @default.
- W4313856035 cites W2952352596 @default.
- W4313856035 cites W2953594546 @default.
- W4313856035 cites W2959655301 @default.
- W4313856035 cites W3022243872 @default.
- W4313856035 cites W3028162623 @default.
- W4313856035 cites W3096689698 @default.
- W4313856035 cites W3133013442 @default.
- W4313856035 cites W3136277503 @default.
- W4313856035 cites W4200410972 @default.
- W4313856035 cites W4200561803 @default.
- W4313856035 cites W4212883601 @default.
- W4313856035 cites W4224012726 @default.
- W4313856035 cites W4224072141 @default.
- W4313856035 cites W783444092 @default.
- W4313856035 doi "https://doi.org/10.1016/j.wasman.2023.01.003" @default.
- W4313856035 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36630884" @default.
- W4313856035 hasPublicationYear "2023" @default.
- W4313856035 type Work @default.
- W4313856035 citedByCount "1" @default.
- W4313856035 countsByYear W43138560352023 @default.
- W4313856035 crossrefType "journal-article" @default.
- W4313856035 hasAuthorship W4313856035A5000391729 @default.
- W4313856035 hasAuthorship W4313856035A5001696671 @default.
- W4313856035 hasAuthorship W4313856035A5032512373 @default.
- W4313856035 hasAuthorship W4313856035A5068013463 @default.
- W4313856035 hasAuthorship W4313856035A5078206008 @default.
- W4313856035 hasAuthorship W4313856035A5084060177 @default.
- W4313856035 hasConcept C119857082 @default.
- W4313856035 hasConcept C12267149 @default.
- W4313856035 hasConcept C127313418 @default.
- W4313856035 hasConcept C159390177 @default.
- W4313856035 hasConcept C159750122 @default.
- W4313856035 hasConcept C164285268 @default.
- W4313856035 hasConcept C164374781 @default.
- W4313856035 hasConcept C169258074 @default.
- W4313856035 hasConcept C187320778 @default.
- W4313856035 hasConcept C196715460 @default.
- W4313856035 hasConcept C24939127 @default.
- W4313856035 hasConcept C39432304 @default.
- W4313856035 hasConcept C41008148 @default.
- W4313856035 hasConcept C63184880 @default.
- W4313856035 hasConceptScore W4313856035C119857082 @default.
- W4313856035 hasConceptScore W4313856035C12267149 @default.
- W4313856035 hasConceptScore W4313856035C127313418 @default.
- W4313856035 hasConceptScore W4313856035C159390177 @default.
- W4313856035 hasConceptScore W4313856035C159750122 @default.
- W4313856035 hasConceptScore W4313856035C164285268 @default.
- W4313856035 hasConceptScore W4313856035C164374781 @default.
- W4313856035 hasConceptScore W4313856035C169258074 @default.
- W4313856035 hasConceptScore W4313856035C187320778 @default.
- W4313856035 hasConceptScore W4313856035C196715460 @default.