Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313856710> ?p ?o ?g. }
- W4313856710 endingPage "e12799" @default.
- W4313856710 startingPage "e12799" @default.
- W4313856710 abstract "Rheumatoid arthritis (RA) is an autoimmune disease that affects individuals of all ages. The basic pathological manifestations are synovial inflammation, pannus formation, and erosion of articular cartilage, bone destruction will eventually lead to joint deformities and loss of function. However, the specific molecular mechanisms of synovitis tissue in RA are still unclear. Therefore, this study aimed to screen and explore the potential hub genes and immune cell infiltration in RA.Three microarray datasets (GSE12021, GSE55457, and GSE55235), from the Gene Expression Omnibus (GEO) database, have been analyzed to explore the potential hub genes and immune cell infiltration in RA. First, the LIMMA package was used to screen the differentially expression genes (DEGs) after removing the batch effect. Then the clusterProfiler package was used to perform functional enrichment analyses. Second, through weighted coexpression network analysis (WGCNA), the key module was identified in the coexpression network of the gene set. Third, the protein-protein interaction (PPI) network was constructed through STRING website and the module analysis was performed using Cytoscape software. Fourth, the CIBERSORT and ssGSEA algorithm were used to analyze the immune status of RA and healthy synovial tissue, and the associations between immune cell infiltration and RA-related diagnostic biomarkers were evaluated. Fifth, we used the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to validate the expression levels of the hub genes, and ROC curve analysis of hub genes for discriminating between RA and healthy tissue. Finally, the gene-drug interaction network was constructed using DrugCentral database, and identification of drug molecules based on hub genes using the Drug Signature Database (DSigDB) by Enrichr.A total of 679 DEGs were identified, containing 270 downregulated genes and 409 upregulated genes. DEGs were primarily enriched in immune response and chemokine signaling pathways, according to functional enrichment analysis of DEGs. WGCNA explored the co-expression network of the gene set and identified key modules, the blue module was selected as the key module associated with RA. Seven hub genes are identified when PPI network and WGCNA core modules are intersected. Immune infiltration analysis using CIBERSORT and ssGSEA algorithms revealed that multiple types of immune infiltration were found to be upregulated in RA tissue compared to normal tissue. Furthermore, the levels of 7 hub genes were closely related to the relative proportions of multiple immune cells in RA. The results of the qRT-PCR demonstrated that the relative expression levels of 6 hub genes (CD27, LCK, CD2, GZMB, IL7R, and IL2RG) were up-regulated in RA synovial tissue, compared with normal tissue. Simultaneously, ROC curves indicated that the above 6 hub genes had strong biomarker potential for RA (AUC >0.8).Through bioinformatics analysis and qRT-PCR experiment, our study ultimately discovered 6 hub genes (CD27, LCK, CD2, GZMB, IL7R, and IL2RG) that closely related to RA. These findings may provide valuable direction for future RA clinical diagnosis, treatment, and associated research." @default.
- W4313856710 created "2023-01-10" @default.
- W4313856710 creator A5002286310 @default.
- W4313856710 creator A5019601723 @default.
- W4313856710 creator A5030366532 @default.
- W4313856710 creator A5031598662 @default.
- W4313856710 creator A5037336675 @default.
- W4313856710 creator A5050999784 @default.
- W4313856710 creator A5060404366 @default.
- W4313856710 creator A5077801675 @default.
- W4313856710 creator A5078429626 @default.
- W4313856710 date "2023-01-01" @default.
- W4313856710 modified "2023-10-12" @default.
- W4313856710 title "Screening and identification of potential hub genes and immune cell infiltration in the synovial tissue of rheumatoid arthritis by bioinformatic approach" @default.
- W4313856710 cites W1531743912 @default.
- W4313856710 cites W1562963428 @default.
- W4313856710 cites W1599501164 @default.
- W4313856710 cites W1966327575 @default.
- W4313856710 cites W1978879640 @default.
- W4313856710 cites W1985987855 @default.
- W4313856710 cites W2020971579 @default.
- W4313856710 cites W2028433016 @default.
- W4313856710 cites W2035618305 @default.
- W4313856710 cites W2039536318 @default.
- W4313856710 cites W2056813079 @default.
- W4313856710 cites W2061130605 @default.
- W4313856710 cites W2062941476 @default.
- W4313856710 cites W2076894371 @default.
- W4313856710 cites W2082620735 @default.
- W4313856710 cites W2084388859 @default.
- W4313856710 cites W2094763363 @default.
- W4313856710 cites W2103711575 @default.
- W4313856710 cites W2103912979 @default.
- W4313856710 cites W2107277218 @default.
- W4313856710 cites W2110826367 @default.
- W4313856710 cites W2126299335 @default.
- W4313856710 cites W2130410032 @default.
- W4313856710 cites W2132981126 @default.
- W4313856710 cites W2136850043 @default.
- W4313856710 cites W2142879323 @default.
- W4313856710 cites W2146512944 @default.
- W4313856710 cites W2153759156 @default.
- W4313856710 cites W2159675211 @default.
- W4313856710 cites W2169353806 @default.
- W4313856710 cites W2192080449 @default.
- W4313856710 cites W2203367795 @default.
- W4313856710 cites W2345356016 @default.
- W4313856710 cites W2474719271 @default.
- W4313856710 cites W2539985226 @default.
- W4313856710 cites W2549726678 @default.
- W4313856710 cites W2602620302 @default.
- W4313856710 cites W2762525527 @default.
- W4313856710 cites W2801028804 @default.
- W4313856710 cites W2900569176 @default.
- W4313856710 cites W2912285780 @default.
- W4313856710 cites W3012559883 @default.
- W4313856710 cites W3041720930 @default.
- W4313856710 cites W3096156342 @default.
- W4313856710 cites W3214696816 @default.
- W4313856710 cites W4205089180 @default.
- W4313856710 cites W4232711633 @default.
- W4313856710 cites W4306669672 @default.
- W4313856710 doi "https://doi.org/10.1016/j.heliyon.2023.e12799" @default.
- W4313856710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36699262" @default.
- W4313856710 hasPublicationYear "2023" @default.
- W4313856710 type Work @default.
- W4313856710 citedByCount "2" @default.
- W4313856710 countsByYear W43138567102023 @default.
- W4313856710 crossrefType "journal-article" @default.
- W4313856710 hasAuthorship W4313856710A5002286310 @default.
- W4313856710 hasAuthorship W4313856710A5019601723 @default.
- W4313856710 hasAuthorship W4313856710A5030366532 @default.
- W4313856710 hasAuthorship W4313856710A5031598662 @default.
- W4313856710 hasAuthorship W4313856710A5037336675 @default.
- W4313856710 hasAuthorship W4313856710A5050999784 @default.
- W4313856710 hasAuthorship W4313856710A5060404366 @default.
- W4313856710 hasAuthorship W4313856710A5077801675 @default.
- W4313856710 hasAuthorship W4313856710A5078429626 @default.
- W4313856710 hasBestOaLocation W43138567101 @default.
- W4313856710 hasConcept C104317684 @default.
- W4313856710 hasConcept C121332964 @default.
- W4313856710 hasConcept C150194340 @default.
- W4313856710 hasConcept C153400128 @default.
- W4313856710 hasConcept C159654299 @default.
- W4313856710 hasConcept C186836561 @default.
- W4313856710 hasConcept C203014093 @default.
- W4313856710 hasConcept C2777575956 @default.
- W4313856710 hasConcept C2779075594 @default.
- W4313856710 hasConcept C54355233 @default.
- W4313856710 hasConcept C60644358 @default.
- W4313856710 hasConcept C70721500 @default.
- W4313856710 hasConcept C86803240 @default.
- W4313856710 hasConcept C8891405 @default.
- W4313856710 hasConcept C97355855 @default.
- W4313856710 hasConceptScore W4313856710C104317684 @default.
- W4313856710 hasConceptScore W4313856710C121332964 @default.
- W4313856710 hasConceptScore W4313856710C150194340 @default.
- W4313856710 hasConceptScore W4313856710C153400128 @default.