Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313886323> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4313886323 endingPage "376" @default.
- W4313886323 startingPage "370" @default.
- W4313886323 abstract "The topic of Drug-Target Interaction (DTI) topic has emerged nowadays since the COVID-19 outbreaks. DTI is one of the stages of finding a new cure for a recent disease. It determines whether a chemical compound would affect a particular protein, known as binding affinity. Recently, significant efforts have been devoted to artificial intelligence (AI) powered DTI. However, the use of transfer learning in DTI has not been explored extensively. This paper aims to make a more general DTI model by investigating DTI prediction method using Transfer learning. Three popular models will be tested and observed: CNN, RNN, and Transformer. Those models combined in several scenarios involving two extensive public datasets on DTI (BindingDB and DAVIS) to find the most optimum architecture. In our finding, combining the CNN model and BindingDB as the source data became the most recommended pre-trained model for real DTI cases. This conclusion was proved with the 6% AUPRC increase after fine-tuning the BindingDB pre-trained model to DAVIS dataset than without pre-training the model first." @default.
- W4313886323 created "2023-01-10" @default.
- W4313886323 creator A5010646526 @default.
- W4313886323 creator A5012557965 @default.
- W4313886323 creator A5063862670 @default.
- W4313886323 creator A5079178134 @default.
- W4313886323 creator A5080650089 @default.
- W4313886323 date "2023-01-01" @default.
- W4313886323 modified "2023-09-26" @default.
- W4313886323 title "Towards a more general drug target interaction prediction model using transfer learning" @default.
- W4313886323 cites W1942239643 @default.
- W4313886323 cites W2086286404 @default.
- W4313886323 cites W2096864392 @default.
- W4313886323 cites W2109991441 @default.
- W4313886323 cites W2129434099 @default.
- W4313886323 cites W2165698076 @default.
- W4313886323 cites W2177317049 @default.
- W4313886323 cites W2558999090 @default.
- W4313886323 cites W2592742128 @default.
- W4313886323 cites W2605952223 @default.
- W4313886323 cites W2610107437 @default.
- W4313886323 cites W2785947426 @default.
- W4313886323 cites W2793951981 @default.
- W4313886323 cites W2955754489 @default.
- W4313886323 cites W2966357564 @default.
- W4313886323 cites W2998334079 @default.
- W4313886323 cites W3012107310 @default.
- W4313886323 cites W3025593963 @default.
- W4313886323 cites W3042826782 @default.
- W4313886323 cites W3109916301 @default.
- W4313886323 doi "https://doi.org/10.1016/j.procs.2022.12.148" @default.
- W4313886323 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36643181" @default.
- W4313886323 hasPublicationYear "2023" @default.
- W4313886323 type Work @default.
- W4313886323 citedByCount "0" @default.
- W4313886323 crossrefType "journal-article" @default.
- W4313886323 hasAuthorship W4313886323A5010646526 @default.
- W4313886323 hasAuthorship W4313886323A5012557965 @default.
- W4313886323 hasAuthorship W4313886323A5063862670 @default.
- W4313886323 hasAuthorship W4313886323A5079178134 @default.
- W4313886323 hasAuthorship W4313886323A5080650089 @default.
- W4313886323 hasBestOaLocation W43138863231 @default.
- W4313886323 hasConcept C119857082 @default.
- W4313886323 hasConcept C150899416 @default.
- W4313886323 hasConcept C154945302 @default.
- W4313886323 hasConcept C2989108626 @default.
- W4313886323 hasConcept C41008148 @default.
- W4313886323 hasConcept C71924100 @default.
- W4313886323 hasConcept C98274493 @default.
- W4313886323 hasConceptScore W4313886323C119857082 @default.
- W4313886323 hasConceptScore W4313886323C150899416 @default.
- W4313886323 hasConceptScore W4313886323C154945302 @default.
- W4313886323 hasConceptScore W4313886323C2989108626 @default.
- W4313886323 hasConceptScore W4313886323C41008148 @default.
- W4313886323 hasConceptScore W4313886323C71924100 @default.
- W4313886323 hasConceptScore W4313886323C98274493 @default.
- W4313886323 hasLocation W43138863231 @default.
- W4313886323 hasLocation W43138863232 @default.
- W4313886323 hasLocation W43138863233 @default.
- W4313886323 hasOpenAccess W4313886323 @default.
- W4313886323 hasPrimaryLocation W43138863231 @default.
- W4313886323 hasRelatedWork W2960456850 @default.
- W4313886323 hasRelatedWork W3015887428 @default.
- W4313886323 hasRelatedWork W3021430260 @default.
- W4313886323 hasRelatedWork W4281645081 @default.
- W4313886323 hasRelatedWork W4308262314 @default.
- W4313886323 hasRelatedWork W4312200629 @default.
- W4313886323 hasRelatedWork W4317565044 @default.
- W4313886323 hasRelatedWork W4362719745 @default.
- W4313886323 hasRelatedWork W4382286161 @default.
- W4313886323 hasRelatedWork W4386213806 @default.
- W4313886323 hasVolume "216" @default.
- W4313886323 isParatext "false" @default.
- W4313886323 isRetracted "false" @default.
- W4313886323 workType "article" @default.