Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313886477> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4313886477 endingPage "102" @default.
- W4313886477 startingPage "96" @default.
- W4313886477 abstract "Predicting the stock market has been done for a long time using traditional methods by analyzing fundamental and technical aspects. With machine learning, stock market predictions are made more accessible and more accurate. Various machine learn- ing approaches have been applied in stock market prediction. This study aims to review relevant works about machine learning approaches in stock market prediction. To achieve this aim, we did a systematic literature review. This study review 30 studies regarding machine learning approaches/models in stock market prediction. Approaches that were used included neural networks and support vector machines. The result of this study is that neural networks are the most used model for stock market prediction. However, this does not mean that other models cannot be used for predicting the stock market." @default.
- W4313886477 created "2023-01-10" @default.
- W4313886477 creator A5004287565 @default.
- W4313886477 creator A5004594726 @default.
- W4313886477 creator A5027760748 @default.
- W4313886477 creator A5067959078 @default.
- W4313886477 creator A5091446436 @default.
- W4313886477 date "2023-01-01" @default.
- W4313886477 modified "2023-10-05" @default.
- W4313886477 title "Machine learning approaches in stock market prediction: A systematic literature review" @default.
- W4313886477 cites W1967408516 @default.
- W4313886477 cites W1995382443 @default.
- W4313886477 cites W2005424446 @default.
- W4313886477 cites W2007358469 @default.
- W4313886477 cites W2025053102 @default.
- W4313886477 cites W2032550340 @default.
- W4313886477 cites W2032771991 @default.
- W4313886477 cites W2053615983 @default.
- W4313886477 cites W2094304287 @default.
- W4313886477 cites W2400770063 @default.
- W4313886477 cites W2518345121 @default.
- W4313886477 cites W2794904450 @default.
- W4313886477 cites W2806777472 @default.
- W4313886477 cites W2912614123 @default.
- W4313886477 cites W3017229010 @default.
- W4313886477 doi "https://doi.org/10.1016/j.procs.2022.12.115" @default.
- W4313886477 hasPublicationYear "2023" @default.
- W4313886477 type Work @default.
- W4313886477 citedByCount "8" @default.
- W4313886477 countsByYear W43138864772023 @default.
- W4313886477 crossrefType "journal-article" @default.
- W4313886477 hasAuthorship W4313886477A5004287565 @default.
- W4313886477 hasAuthorship W4313886477A5004594726 @default.
- W4313886477 hasAuthorship W4313886477A5027760748 @default.
- W4313886477 hasAuthorship W4313886477A5067959078 @default.
- W4313886477 hasAuthorship W4313886477A5091446436 @default.
- W4313886477 hasBestOaLocation W43138864771 @default.
- W4313886477 hasConcept C119857082 @default.
- W4313886477 hasConcept C12267149 @default.
- W4313886477 hasConcept C127413603 @default.
- W4313886477 hasConcept C151730666 @default.
- W4313886477 hasConcept C154945302 @default.
- W4313886477 hasConcept C17744445 @default.
- W4313886477 hasConcept C189708586 @default.
- W4313886477 hasConcept C199539241 @default.
- W4313886477 hasConcept C204036174 @default.
- W4313886477 hasConcept C2776256503 @default.
- W4313886477 hasConcept C2779473830 @default.
- W4313886477 hasConcept C2780299701 @default.
- W4313886477 hasConcept C2780762169 @default.
- W4313886477 hasConcept C41008148 @default.
- W4313886477 hasConcept C50644808 @default.
- W4313886477 hasConcept C78519656 @default.
- W4313886477 hasConcept C86803240 @default.
- W4313886477 hasConceptScore W4313886477C119857082 @default.
- W4313886477 hasConceptScore W4313886477C12267149 @default.
- W4313886477 hasConceptScore W4313886477C127413603 @default.
- W4313886477 hasConceptScore W4313886477C151730666 @default.
- W4313886477 hasConceptScore W4313886477C154945302 @default.
- W4313886477 hasConceptScore W4313886477C17744445 @default.
- W4313886477 hasConceptScore W4313886477C189708586 @default.
- W4313886477 hasConceptScore W4313886477C199539241 @default.
- W4313886477 hasConceptScore W4313886477C204036174 @default.
- W4313886477 hasConceptScore W4313886477C2776256503 @default.
- W4313886477 hasConceptScore W4313886477C2779473830 @default.
- W4313886477 hasConceptScore W4313886477C2780299701 @default.
- W4313886477 hasConceptScore W4313886477C2780762169 @default.
- W4313886477 hasConceptScore W4313886477C41008148 @default.
- W4313886477 hasConceptScore W4313886477C50644808 @default.
- W4313886477 hasConceptScore W4313886477C78519656 @default.
- W4313886477 hasConceptScore W4313886477C86803240 @default.
- W4313886477 hasLocation W43138864771 @default.
- W4313886477 hasOpenAccess W4313886477 @default.
- W4313886477 hasPrimaryLocation W43138864771 @default.
- W4313886477 hasRelatedWork W1508956230 @default.
- W4313886477 hasRelatedWork W1982790649 @default.
- W4313886477 hasRelatedWork W1996541855 @default.
- W4313886477 hasRelatedWork W2160519722 @default.
- W4313886477 hasRelatedWork W2289642014 @default.
- W4313886477 hasRelatedWork W2368668864 @default.
- W4313886477 hasRelatedWork W2597786636 @default.
- W4313886477 hasRelatedWork W2794518116 @default.
- W4313886477 hasRelatedWork W3195168932 @default.
- W4313886477 hasRelatedWork W2336970615 @default.
- W4313886477 hasVolume "216" @default.
- W4313886477 isParatext "false" @default.
- W4313886477 isRetracted "false" @default.
- W4313886477 workType "article" @default.