Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313886596> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4313886596 abstract "Facial Expression Recognition (FER) in the wild using Convolutional Neural Networks (CNNs) has been a challenge for years because of the significant intra-class variances and interclass similarities. In contrast, facial expression recognition in the wild is vital for human-computer interactions and has numerous applications. Enhancing the discriminative features extraction ability is one approach to solving this issue. In this work, a sparse transform is used to improve a CNN’s ability to extract features without adding to the network’s computational load. We use a sparse representation layer that is built by the Haar wavelet transform or shearlet transform prior to the convolutional layers of a standard CNN. With the proposed sparse representation layers, we introduce a VGGNet and an AlexNet architecture and conduct experiments on the FER2013 dataset without the use of additional training data. The experimental results demonstrated that the wavelet transform’s sparse representation layer can improve FER performance without increasing an excessive computational burden. We achieved testing accuracy of 73.25 percent on the FER2013 dataset using VGGNet paired with a sparse representation layer built inside a wavelet transform, which is among the best results for a single network." @default.
- W4313886596 created "2023-01-10" @default.
- W4313886596 creator A5027403595 @default.
- W4313886596 creator A5027937292 @default.
- W4313886596 creator A5030863883 @default.
- W4313886596 date "2022-12-10" @default.
- W4313886596 modified "2023-09-22" @default.
- W4313886596 title "Facial Expression Recognition based on Convolutional Neural Network with Sparse Representation" @default.
- W4313886596 cites W1994906459 @default.
- W4313886596 cites W2070353225 @default.
- W4313886596 cites W2072072671 @default.
- W4313886596 cites W2092604057 @default.
- W4313886596 cites W2108283046 @default.
- W4313886596 cites W2112796928 @default.
- W4313886596 cites W2115941714 @default.
- W4313886596 cites W2139916508 @default.
- W4313886596 cites W2144506334 @default.
- W4313886596 cites W2145310492 @default.
- W4313886596 cites W2464641472 @default.
- W4313886596 cites W2534320940 @default.
- W4313886596 cites W2576989276 @default.
- W4313886596 cites W2610691757 @default.
- W4313886596 cites W2963299736 @default.
- W4313886596 cites W2963494934 @default.
- W4313886596 cites W2963699903 @default.
- W4313886596 cites W2982153880 @default.
- W4313886596 cites W3088389255 @default.
- W4313886596 cites W3133902371 @default.
- W4313886596 cites W3157999215 @default.
- W4313886596 cites W3161346624 @default.
- W4313886596 doi "https://doi.org/10.1109/icsai57119.2022.10005481" @default.
- W4313886596 hasPublicationYear "2022" @default.
- W4313886596 type Work @default.
- W4313886596 citedByCount "0" @default.
- W4313886596 crossrefType "proceedings-article" @default.
- W4313886596 hasAuthorship W4313886596A5027403595 @default.
- W4313886596 hasAuthorship W4313886596A5027937292 @default.
- W4313886596 hasAuthorship W4313886596A5030863883 @default.
- W4313886596 hasConcept C124066611 @default.
- W4313886596 hasConcept C153180895 @default.
- W4313886596 hasConcept C154945302 @default.
- W4313886596 hasConcept C17744445 @default.
- W4313886596 hasConcept C196216189 @default.
- W4313886596 hasConcept C199539241 @default.
- W4313886596 hasConcept C2776359362 @default.
- W4313886596 hasConcept C2780423554 @default.
- W4313886596 hasConcept C41008148 @default.
- W4313886596 hasConcept C46286280 @default.
- W4313886596 hasConcept C47432892 @default.
- W4313886596 hasConcept C52622490 @default.
- W4313886596 hasConcept C81363708 @default.
- W4313886596 hasConcept C94625758 @default.
- W4313886596 hasConcept C97931131 @default.
- W4313886596 hasConceptScore W4313886596C124066611 @default.
- W4313886596 hasConceptScore W4313886596C153180895 @default.
- W4313886596 hasConceptScore W4313886596C154945302 @default.
- W4313886596 hasConceptScore W4313886596C17744445 @default.
- W4313886596 hasConceptScore W4313886596C196216189 @default.
- W4313886596 hasConceptScore W4313886596C199539241 @default.
- W4313886596 hasConceptScore W4313886596C2776359362 @default.
- W4313886596 hasConceptScore W4313886596C2780423554 @default.
- W4313886596 hasConceptScore W4313886596C41008148 @default.
- W4313886596 hasConceptScore W4313886596C46286280 @default.
- W4313886596 hasConceptScore W4313886596C47432892 @default.
- W4313886596 hasConceptScore W4313886596C52622490 @default.
- W4313886596 hasConceptScore W4313886596C81363708 @default.
- W4313886596 hasConceptScore W4313886596C94625758 @default.
- W4313886596 hasConceptScore W4313886596C97931131 @default.
- W4313886596 hasFunder F4320321001 @default.
- W4313886596 hasLocation W43138865961 @default.
- W4313886596 hasOpenAccess W4313886596 @default.
- W4313886596 hasPrimaryLocation W43138865961 @default.
- W4313886596 hasRelatedWork W2059299633 @default.
- W4313886596 hasRelatedWork W2164142187 @default.
- W4313886596 hasRelatedWork W2404514746 @default.
- W4313886596 hasRelatedWork W2406522397 @default.
- W4313886596 hasRelatedWork W2518599539 @default.
- W4313886596 hasRelatedWork W2541950815 @default.
- W4313886596 hasRelatedWork W2725397116 @default.
- W4313886596 hasRelatedWork W2743258233 @default.
- W4313886596 hasRelatedWork W2806866760 @default.
- W4313886596 hasRelatedWork W4312376745 @default.
- W4313886596 isParatext "false" @default.
- W4313886596 isRetracted "false" @default.
- W4313886596 workType "article" @default.