Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313887012> ?p ?o ?g. }
- W4313887012 abstract "The leaf area index (LAI) is an important parameter for describing the growth status and canopy structure of vegetation. The rapid and accurate acquisition of the vegetation or agroforestry LAI has great scientific significance in agroforestry ecological ecosystems research and a very important practical value for guiding agricultural and forestry production. In this study, the typical tropical crops (rubber forest) in Hainan Island were selected as the research area, the empirical and neural network (NN) LAI estimation models of rubber forest were constructed based on satellite remote sensing vegetation indices and the field LAI measurement data, and the spatiotemporal variation was analyzed. The results showed that, compared with normalized difference vegetation index (NDVI), green NDVI (GNDVI), ratio VI (RVI), normalized near-infrared (NNIR), wide dynamic range VI (WDRVI), and normalized difference water index (NDWI), enhanced vegetation index (EVI), soil adjusted vegetation index (SAVI), DVI, renormalized DVI (RDVI), and modified SAVI (MSAVI) have higher correlations with LAI. Among the LAI estimation models of rubber forest based on empirical and artificial NN (ANN) models, the estimation accuracy of ANN achieves the highest value. The linear fitting determination coefficient R2 of the observed and simulated rubber forest LAI was 0.85 (p < 0.001), the root mean square error (RMSE) was 0.15, and the average relative error (RE) was 1.93%. However, there was underestimation in the middle-value area and overestimation in the high- and low-value areas of LAI. Based on remote sensing mapping of the rubber forest LAI, the high LAI values (4.40 to 6.00 m2 m − 2) were mainly distributed in Danzhou and Baisha (west of Hainan Island); the middle LAI values (3.80 to 4.40 m2 m − 2) were mainly located in Chengmai, Tunchang, and Qiongzhong (middle of Hainan Island); and the low LAI values (<3.80 m2 m − 2) were shown primarily on Ding’an, Qionghai, Wanning, Ledong, and Sanya (east and south of Hainan Island). In summary, the remote sensing estimation model for the rubber plantation LAI based on the vegetation index has high accuracy and good values for application." @default.
- W4313887012 created "2023-01-10" @default.
- W4313887012 creator A5000731922 @default.
- W4313887012 creator A5002696952 @default.
- W4313887012 creator A5004000901 @default.
- W4313887012 creator A5011120346 @default.
- W4313887012 creator A5053813343 @default.
- W4313887012 creator A5061405661 @default.
- W4313887012 creator A5061579496 @default.
- W4313887012 creator A5087391718 @default.
- W4313887012 date "2023-01-09" @default.
- W4313887012 modified "2023-09-29" @default.
- W4313887012 title "Retrieving leaf area index of rubber plantation in Hainan Island using empirical and neural network models with Landsat images" @default.
- W4313887012 cites W1608631099 @default.
- W4313887012 cites W1685317713 @default.
- W4313887012 cites W1781791972 @default.
- W4313887012 cites W1964217023 @default.
- W4313887012 cites W1965117835 @default.
- W4313887012 cites W1967248741 @default.
- W4313887012 cites W1969010087 @default.
- W4313887012 cites W1972807594 @default.
- W4313887012 cites W1973228073 @default.
- W4313887012 cites W1973410094 @default.
- W4313887012 cites W1982592465 @default.
- W4313887012 cites W1986767077 @default.
- W4313887012 cites W1992833595 @default.
- W4313887012 cites W1992857854 @default.
- W4313887012 cites W1993292319 @default.
- W4313887012 cites W1995103915 @default.
- W4313887012 cites W1998296918 @default.
- W4313887012 cites W2000102737 @default.
- W4313887012 cites W2005034723 @default.
- W4313887012 cites W2011475440 @default.
- W4313887012 cites W2013061102 @default.
- W4313887012 cites W2013369959 @default.
- W4313887012 cites W2014955600 @default.
- W4313887012 cites W2016160557 @default.
- W4313887012 cites W2020095931 @default.
- W4313887012 cites W2022224360 @default.
- W4313887012 cites W2025967407 @default.
- W4313887012 cites W2034650341 @default.
- W4313887012 cites W2036005841 @default.
- W4313887012 cites W2036341004 @default.
- W4313887012 cites W2043142216 @default.
- W4313887012 cites W2043673805 @default.
- W4313887012 cites W2052256290 @default.
- W4313887012 cites W2054497277 @default.
- W4313887012 cites W2056352756 @default.
- W4313887012 cites W2059501000 @default.
- W4313887012 cites W2063623478 @default.
- W4313887012 cites W2067703153 @default.
- W4313887012 cites W2069419553 @default.
- W4313887012 cites W2071454092 @default.
- W4313887012 cites W2071874425 @default.
- W4313887012 cites W2077509829 @default.
- W4313887012 cites W2078996926 @default.
- W4313887012 cites W2079630883 @default.
- W4313887012 cites W2080441468 @default.
- W4313887012 cites W2085445625 @default.
- W4313887012 cites W2085482846 @default.
- W4313887012 cites W2086920909 @default.
- W4313887012 cites W2094845052 @default.
- W4313887012 cites W2113410727 @default.
- W4313887012 cites W2116952004 @default.
- W4313887012 cites W2120493350 @default.
- W4313887012 cites W2125397877 @default.
- W4313887012 cites W2129804846 @default.
- W4313887012 cites W2130995459 @default.
- W4313887012 cites W2134769768 @default.
- W4313887012 cites W2135211571 @default.
- W4313887012 cites W2136032982 @default.
- W4313887012 cites W2151647593 @default.
- W4313887012 cites W2153059295 @default.
- W4313887012 cites W2157707218 @default.
- W4313887012 cites W2161087424 @default.
- W4313887012 cites W2163450852 @default.
- W4313887012 cites W2164008183 @default.
- W4313887012 cites W2164574849 @default.
- W4313887012 cites W2167869331 @default.
- W4313887012 cites W221493477 @default.
- W4313887012 cites W2264733028 @default.
- W4313887012 cites W2334837215 @default.
- W4313887012 cites W2339345728 @default.
- W4313887012 cites W2725897987 @default.
- W4313887012 cites W2793366784 @default.
- W4313887012 cites W2885946405 @default.
- W4313887012 cites W2943316090 @default.
- W4313887012 cites W4248268077 @default.
- W4313887012 cites W633320881 @default.
- W4313887012 cites W830770453 @default.
- W4313887012 doi "https://doi.org/10.1117/1.jrs.17.014503" @default.
- W4313887012 hasPublicationYear "2023" @default.
- W4313887012 type Work @default.
- W4313887012 citedByCount "1" @default.
- W4313887012 countsByYear W43138870122023 @default.
- W4313887012 crossrefType "journal-article" @default.
- W4313887012 hasAuthorship W4313887012A5000731922 @default.
- W4313887012 hasAuthorship W4313887012A5002696952 @default.
- W4313887012 hasAuthorship W4313887012A5004000901 @default.
- W4313887012 hasAuthorship W4313887012A5011120346 @default.