Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313887024> ?p ?o ?g. }
- W4313887024 abstract "There is a growing need for machine learning-based anomaly detection strategies to broaden the search for Beyond-the-Standard-Model (BSM) physics at the Large Hadron Collider (LHC) and elsewhere. The first step of any anomaly detection approach is to specify observables and then use them to decide on a set of anomalous events. One common choice is to select events that have low probability density. It is a well-known fact that probability densities are not invariant under coordinate transformations, so the sensitivity can depend on the initial choice of coordinates. The broader machine learning community has recently connected coordinate sensitivity with anomaly detection and our goal is to bring awareness of this issue to the growing high energy physics literature on anomaly detection. In addition to analytical explanations, we provide numerical examples from simple random variables and from the LHC Olympics Dataset that show how using probability density as an anomaly score can lead to events being classified as anomalous or not depending on the coordinate frame." @default.
- W4313887024 created "2023-01-10" @default.
- W4313887024 creator A5031270964 @default.
- W4313887024 creator A5054491740 @default.
- W4313887024 creator A5056875824 @default.
- W4313887024 creator A5064513905 @default.
- W4313887024 creator A5072503522 @default.
- W4313887024 creator A5075970480 @default.
- W4313887024 date "2023-01-09" @default.
- W4313887024 modified "2023-09-30" @default.
- W4313887024 title "Anomaly detection under coordinate transformations" @default.
- W4313887024 cites W1480376833 @default.
- W4313887024 cites W1987435915 @default.
- W4313887024 cites W2143467729 @default.
- W4313887024 cites W2163097950 @default.
- W4313887024 cites W2165610102 @default.
- W4313887024 cites W2223576019 @default.
- W4313887024 cites W2743218360 @default.
- W4313887024 cites W2753683827 @default.
- W4313887024 cites W2765811365 @default.
- W4313887024 cites W2807595580 @default.
- W4313887024 cites W2883371446 @default.
- W4313887024 cites W2884928202 @default.
- W4313887024 cites W2889504592 @default.
- W4313887024 cites W2901002004 @default.
- W4313887024 cites W2913547438 @default.
- W4313887024 cites W2932744737 @default.
- W4313887024 cites W2948978827 @default.
- W4313887024 cites W2981025103 @default.
- W4313887024 cites W2992005611 @default.
- W4313887024 cites W2992189997 @default.
- W4313887024 cites W2998758436 @default.
- W4313887024 cites W2999649255 @default.
- W4313887024 cites W3007010995 @default.
- W4313887024 cites W3031282293 @default.
- W4313887024 cites W3081542115 @default.
- W4313887024 cites W3083582338 @default.
- W4313887024 cites W3093391106 @default.
- W4313887024 cites W3096024635 @default.
- W4313887024 cites W3101538771 @default.
- W4313887024 cites W3103432634 @default.
- W4313887024 cites W3103936969 @default.
- W4313887024 cites W3105096914 @default.
- W4313887024 cites W3111373706 @default.
- W4313887024 cites W3118379762 @default.
- W4313887024 cites W3121614399 @default.
- W4313887024 cites W3121974422 @default.
- W4313887024 cites W3122543598 @default.
- W4313887024 cites W3131837502 @default.
- W4313887024 cites W3132538778 @default.
- W4313887024 cites W3133557333 @default.
- W4313887024 cites W3135316714 @default.
- W4313887024 cites W3137185121 @default.
- W4313887024 cites W3149710321 @default.
- W4313887024 cites W3157268828 @default.
- W4313887024 cites W3175379388 @default.
- W4313887024 cites W3177229451 @default.
- W4313887024 cites W3183014841 @default.
- W4313887024 cites W3185129062 @default.
- W4313887024 cites W3192130203 @default.
- W4313887024 cites W3194947106 @default.
- W4313887024 cites W3196391706 @default.
- W4313887024 cites W3198458291 @default.
- W4313887024 cites W3198786209 @default.
- W4313887024 cites W3199255682 @default.
- W4313887024 cites W3206632493 @default.
- W4313887024 cites W3208270664 @default.
- W4313887024 cites W3211679656 @default.
- W4313887024 cites W3214522845 @default.
- W4313887024 cites W3215709781 @default.
- W4313887024 cites W4200633293 @default.
- W4313887024 cites W4210975915 @default.
- W4313887024 cites W4211035720 @default.
- W4313887024 cites W4213448879 @default.
- W4313887024 cites W4214512654 @default.
- W4313887024 cites W4214648479 @default.
- W4313887024 cites W4220812970 @default.
- W4313887024 cites W4220857306 @default.
- W4313887024 cites W4221104935 @default.
- W4313887024 cites W4221111513 @default.
- W4313887024 cites W4225548011 @default.
- W4313887024 cites W4281488612 @default.
- W4313887024 cites W4281640551 @default.
- W4313887024 cites W4290839529 @default.
- W4313887024 cites W4294203698 @default.
- W4313887024 cites W4294785841 @default.
- W4313887024 cites W4295864483 @default.
- W4313887024 cites W4297008839 @default.
- W4313887024 cites W4302013413 @default.
- W4313887024 cites W4306825440 @default.
- W4313887024 cites W91088564 @default.
- W4313887024 doi "https://doi.org/10.1103/physrevd.107.015009" @default.
- W4313887024 hasPublicationYear "2023" @default.
- W4313887024 type Work @default.
- W4313887024 citedByCount "1" @default.
- W4313887024 countsByYear W43138870242023 @default.
- W4313887024 crossrefType "journal-article" @default.
- W4313887024 hasAuthorship W4313887024A5031270964 @default.
- W4313887024 hasAuthorship W4313887024A5054491740 @default.
- W4313887024 hasAuthorship W4313887024A5056875824 @default.