Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313887136> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4313887136 endingPage "3351" @default.
- W4313887136 startingPage "3341" @default.
- W4313887136 abstract "The design of periodic structures is a very time-consuming process because it requires many cycles of full-wave simulations to obtain the desired electromagnetic (EM) properties. This challenge is amplified when designing reconfigurable periodic structures. This article proposes an intelligent method for the reconfigurable periodic structure design (RPSD) based on machine learning. First, an improved physical and mathematical modeling approach is proposed for reconfigurable periodic structures, which enables the application of machine learning in RPSD. Thereafter, we set up distributed predictors for different reconfigurable states to avoid the one-to-many mapping problem. In addition, the networks of these predictors are trained using variational autoencoders (VAEs) to reduce the associated learning difficulties. These enable the obtention of accurate predictors with small sample data. Moreover, the training of these predictors can be easily accelerated by parallel computation because of their independence. Finally, reconfigurable periodic structures can be intelligently designed by the combination of the trained predictors and a stochastic optimization technique. Some examples are provided to verify the practicality and accuracy of the proposed method." @default.
- W4313887136 created "2023-01-10" @default.
- W4313887136 creator A5021827883 @default.
- W4313887136 creator A5042568654 @default.
- W4313887136 creator A5047518862 @default.
- W4313887136 date "2023-08-01" @default.
- W4313887136 modified "2023-10-16" @default.
- W4313887136 title "Design of Reconfigurable Periodic Structures Based on Machine Learning" @default.
- W4313887136 cites W1901616594 @default.
- W4313887136 cites W1979054322 @default.
- W4313887136 cites W2017596091 @default.
- W4313887136 cites W2101736678 @default.
- W4313887136 cites W2137868540 @default.
- W4313887136 cites W2145189981 @default.
- W4313887136 cites W2156377537 @default.
- W4313887136 cites W2278054929 @default.
- W4313887136 cites W2335339212 @default.
- W4313887136 cites W2610754933 @default.
- W4313887136 cites W2624972355 @default.
- W4313887136 cites W2802562798 @default.
- W4313887136 cites W2806536390 @default.
- W4313887136 cites W2900701156 @default.
- W4313887136 cites W2916112684 @default.
- W4313887136 cites W2937816906 @default.
- W4313887136 cites W2971568660 @default.
- W4313887136 cites W2995171099 @default.
- W4313887136 cites W2999183762 @default.
- W4313887136 cites W3011465841 @default.
- W4313887136 cites W3011574762 @default.
- W4313887136 cites W3012631271 @default.
- W4313887136 cites W3035932922 @default.
- W4313887136 cites W3102634797 @default.
- W4313887136 cites W3133907876 @default.
- W4313887136 cites W3138642483 @default.
- W4313887136 cites W3157561919 @default.
- W4313887136 cites W3163907945 @default.
- W4313887136 cites W4206116476 @default.
- W4313887136 cites W4214749394 @default.
- W4313887136 doi "https://doi.org/10.1109/tmtt.2022.3233740" @default.
- W4313887136 hasPublicationYear "2023" @default.
- W4313887136 type Work @default.
- W4313887136 citedByCount "0" @default.
- W4313887136 crossrefType "journal-article" @default.
- W4313887136 hasAuthorship W4313887136A5021827883 @default.
- W4313887136 hasAuthorship W4313887136A5042568654 @default.
- W4313887136 hasAuthorship W4313887136A5047518862 @default.
- W4313887136 hasConcept C105795698 @default.
- W4313887136 hasConcept C111919701 @default.
- W4313887136 hasConcept C113775141 @default.
- W4313887136 hasConcept C11413529 @default.
- W4313887136 hasConcept C119857082 @default.
- W4313887136 hasConcept C154945302 @default.
- W4313887136 hasConcept C177264268 @default.
- W4313887136 hasConcept C199360897 @default.
- W4313887136 hasConcept C33923547 @default.
- W4313887136 hasConcept C35651441 @default.
- W4313887136 hasConcept C41008148 @default.
- W4313887136 hasConcept C45374587 @default.
- W4313887136 hasConcept C98045186 @default.
- W4313887136 hasConceptScore W4313887136C105795698 @default.
- W4313887136 hasConceptScore W4313887136C111919701 @default.
- W4313887136 hasConceptScore W4313887136C113775141 @default.
- W4313887136 hasConceptScore W4313887136C11413529 @default.
- W4313887136 hasConceptScore W4313887136C119857082 @default.
- W4313887136 hasConceptScore W4313887136C154945302 @default.
- W4313887136 hasConceptScore W4313887136C177264268 @default.
- W4313887136 hasConceptScore W4313887136C199360897 @default.
- W4313887136 hasConceptScore W4313887136C33923547 @default.
- W4313887136 hasConceptScore W4313887136C35651441 @default.
- W4313887136 hasConceptScore W4313887136C41008148 @default.
- W4313887136 hasConceptScore W4313887136C45374587 @default.
- W4313887136 hasConceptScore W4313887136C98045186 @default.
- W4313887136 hasFunder F4320321001 @default.
- W4313887136 hasFunder F4320322438 @default.
- W4313887136 hasFunder F4320335990 @default.
- W4313887136 hasIssue "8" @default.
- W4313887136 hasLocation W43138871361 @default.
- W4313887136 hasOpenAccess W4313887136 @default.
- W4313887136 hasPrimaryLocation W43138871361 @default.
- W4313887136 hasRelatedWork W2961085424 @default.
- W4313887136 hasRelatedWork W3046775127 @default.
- W4313887136 hasRelatedWork W3170094116 @default.
- W4313887136 hasRelatedWork W4205958290 @default.
- W4313887136 hasRelatedWork W4285260836 @default.
- W4313887136 hasRelatedWork W4286629047 @default.
- W4313887136 hasRelatedWork W4306321456 @default.
- W4313887136 hasRelatedWork W4306674287 @default.
- W4313887136 hasRelatedWork W4386462264 @default.
- W4313887136 hasRelatedWork W4224009465 @default.
- W4313887136 hasVolume "71" @default.
- W4313887136 isParatext "false" @default.
- W4313887136 isRetracted "false" @default.
- W4313887136 workType "article" @default.