Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313887297> ?p ?o ?g. }
- W4313887297 endingPage "38" @default.
- W4313887297 startingPage "1" @default.
- W4313887297 abstract "Abstract We propose a novel technique for algorithm-selection, applicable to optimisation domains in which there is implicit sequential information encapsulated in the data, e.g., in online bin-packing. Specifically we train two types of recurrent neural networks to predict a packing heuristic in online bin-packing, selecting from four well-known heuristics. As input, the RNN methods only use the sequence of item-sizes. This contrasts to typical approaches to algorithm-selection which require a model to be trained using domain-specific instance features that need to be first derived from the input data. The RNN approaches are shown to be capable of achieving within 5% of the oracle performance on between 80.88 and 97.63% of the instances, depending on the dataset. They are also shown to outperform classical machine learning models trained using derived features. Finally, we hypothesise that the proposed methods perform well when the instances exhibit some implicit structure that results in discriminatory performance with respect to a set of heuristics. We test this hypothesis by generating fourteen new datasets with increasing levels of structure, and show that there is a critical threshold of structure required before algorithm-selection delivers benefit." @default.
- W4313887297 created "2023-01-10" @default.
- W4313887297 creator A5006992974 @default.
- W4313887297 creator A5012099684 @default.
- W4313887297 creator A5059180650 @default.
- W4313887297 date "2023-01-09" @default.
- W4313887297 modified "2023-10-14" @default.
- W4313887297 title "Automated Algorithm Selection: from Feature-Based to Feature-Free Approaches" @default.
- W4313887297 cites W14327270 @default.
- W4313887297 cites W148859753 @default.
- W4313887297 cites W1495775210 @default.
- W4313887297 cites W1506875017 @default.
- W4313887297 cites W1512718620 @default.
- W4313887297 cites W1526726828 @default.
- W4313887297 cites W1546325545 @default.
- W4313887297 cites W178499933 @default.
- W4313887297 cites W1872241778 @default.
- W4313887297 cites W1909234690 @default.
- W4313887297 cites W1915652795 @default.
- W4313887297 cites W1967715425 @default.
- W4313887297 cites W1975081465 @default.
- W4313887297 cites W1989101984 @default.
- W4313887297 cites W2003118470 @default.
- W4313887297 cites W2016393589 @default.
- W4313887297 cites W2023785065 @default.
- W4313887297 cites W2034400748 @default.
- W4313887297 cites W2043862089 @default.
- W4313887297 cites W2048628062 @default.
- W4313887297 cites W2054706389 @default.
- W4313887297 cites W2057160460 @default.
- W4313887297 cites W2059409198 @default.
- W4313887297 cites W2064675550 @default.
- W4313887297 cites W2071948161 @default.
- W4313887297 cites W2089213632 @default.
- W4313887297 cites W2101761886 @default.
- W4313887297 cites W2111772266 @default.
- W4313887297 cites W2131422526 @default.
- W4313887297 cites W2153607265 @default.
- W4313887297 cites W2157331557 @default.
- W4313887297 cites W2342137734 @default.
- W4313887297 cites W2469401779 @default.
- W4313887297 cites W2590578174 @default.
- W4313887297 cites W2607665052 @default.
- W4313887297 cites W26704448 @default.
- W4313887297 cites W2734645630 @default.
- W4313887297 cites W2754051771 @default.
- W4313887297 cites W2763519809 @default.
- W4313887297 cites W2768617563 @default.
- W4313887297 cites W2777138789 @default.
- W4313887297 cites W2789600509 @default.
- W4313887297 cites W2810103615 @default.
- W4313887297 cites W2827078913 @default.
- W4313887297 cites W2892341857 @default.
- W4313887297 cites W2955587577 @default.
- W4313887297 cites W2964281761 @default.
- W4313887297 cites W2964331270 @default.
- W4313887297 cites W3029372092 @default.
- W4313887297 cites W4236362309 @default.
- W4313887297 cites W78075864 @default.
- W4313887297 cites W950853366 @default.
- W4313887297 doi "https://doi.org/10.1007/s10732-022-09505-4" @default.
- W4313887297 hasPublicationYear "2023" @default.
- W4313887297 type Work @default.
- W4313887297 citedByCount "2" @default.
- W4313887297 countsByYear W43138872972023 @default.
- W4313887297 crossrefType "journal-article" @default.
- W4313887297 hasAuthorship W4313887297A5006992974 @default.
- W4313887297 hasAuthorship W4313887297A5012099684 @default.
- W4313887297 hasAuthorship W4313887297A5059180650 @default.
- W4313887297 hasBestOaLocation W43138872971 @default.
- W4313887297 hasConcept C111919701 @default.
- W4313887297 hasConcept C11413529 @default.
- W4313887297 hasConcept C115903868 @default.
- W4313887297 hasConcept C119857082 @default.
- W4313887297 hasConcept C127705205 @default.
- W4313887297 hasConcept C138885662 @default.
- W4313887297 hasConcept C148483581 @default.
- W4313887297 hasConcept C153180895 @default.
- W4313887297 hasConcept C154945302 @default.
- W4313887297 hasConcept C156273044 @default.
- W4313887297 hasConcept C173801870 @default.
- W4313887297 hasConcept C177264268 @default.
- W4313887297 hasConcept C199360897 @default.
- W4313887297 hasConcept C2776401178 @default.
- W4313887297 hasConcept C2778112365 @default.
- W4313887297 hasConcept C41008148 @default.
- W4313887297 hasConcept C41895202 @default.
- W4313887297 hasConcept C54355233 @default.
- W4313887297 hasConcept C55166926 @default.
- W4313887297 hasConcept C81917197 @default.
- W4313887297 hasConcept C86803240 @default.
- W4313887297 hasConcept C87219788 @default.
- W4313887297 hasConceptScore W4313887297C111919701 @default.
- W4313887297 hasConceptScore W4313887297C11413529 @default.
- W4313887297 hasConceptScore W4313887297C115903868 @default.
- W4313887297 hasConceptScore W4313887297C119857082 @default.
- W4313887297 hasConceptScore W4313887297C127705205 @default.
- W4313887297 hasConceptScore W4313887297C138885662 @default.