Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313887577> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4313887577 endingPage "54" @default.
- W4313887577 startingPage "47" @default.
- W4313887577 abstract "Abstract Laser powder bed fusion of metals (PBF-LB/M) is a process widely used in additive manufacturing (AM). It is highly sensitive to its process parameters directly determining the quality of the components. Hence, optimal parameters are needed to ensure the highest part quality. However, current approaches such as experimental investigation and the numerical simulation of the process are time-consuming and costly, requiring more efficient ways for parameter optimization. In this work, the use of machine learning (ML) for parameter search is investigated based on the influence of laser power and speed on simulated melt pool dimensions and experimentally determined part density. In total, four machine learning algorithms are considered. The models are trained to predict the melt pool size and part density based on the process parameters. The accuracy is evaluated based on the deviation of the prediction from the actual value. The models are implemented in python using the scikit-learn library. The results show that ML models provide generalized predictions with small errors for both the melt pool dimensions and the part density, demonstrating the potential of ML in AM. The main limitation is data collection, which is still done experimentally or simulatively. However, the results show that ML provides an opportunity for more efficient parameter optimization in PBF-LB/M." @default.
- W4313887577 created "2023-01-10" @default.
- W4313887577 creator A5018912107 @default.
- W4313887577 creator A5021870509 @default.
- W4313887577 creator A5029680958 @default.
- W4313887577 creator A5050739499 @default.
- W4313887577 date "2023-01-09" @default.
- W4313887577 modified "2023-10-17" @default.
- W4313887577 title "Predicting melt track geometry and part density in laser powder bed fusion of metals using machine learning" @default.
- W4313887577 cites W2048140592 @default.
- W4313887577 cites W2272112894 @default.
- W4313887577 cites W2480295740 @default.
- W4313887577 cites W2743884968 @default.
- W4313887577 cites W2902893625 @default.
- W4313887577 cites W2937750627 @default.
- W4313887577 cites W2983919518 @default.
- W4313887577 cites W3016989108 @default.
- W4313887577 cites W3047048166 @default.
- W4313887577 cites W3103067449 @default.
- W4313887577 cites W3127569765 @default.
- W4313887577 cites W3152338637 @default.
- W4313887577 cites W3155785273 @default.
- W4313887577 cites W4229498285 @default.
- W4313887577 doi "https://doi.org/10.1007/s40964-022-00387-3" @default.
- W4313887577 hasPublicationYear "2023" @default.
- W4313887577 type Work @default.
- W4313887577 citedByCount "4" @default.
- W4313887577 countsByYear W43138875772023 @default.
- W4313887577 crossrefType "journal-article" @default.
- W4313887577 hasAuthorship W4313887577A5018912107 @default.
- W4313887577 hasAuthorship W4313887577A5021870509 @default.
- W4313887577 hasAuthorship W4313887577A5029680958 @default.
- W4313887577 hasAuthorship W4313887577A5050739499 @default.
- W4313887577 hasBestOaLocation W43138875771 @default.
- W4313887577 hasConcept C111919701 @default.
- W4313887577 hasConcept C11413529 @default.
- W4313887577 hasConcept C119857082 @default.
- W4313887577 hasConcept C120665830 @default.
- W4313887577 hasConcept C121332964 @default.
- W4313887577 hasConcept C127413603 @default.
- W4313887577 hasConcept C138885662 @default.
- W4313887577 hasConcept C154945302 @default.
- W4313887577 hasConcept C158525013 @default.
- W4313887577 hasConcept C18762648 @default.
- W4313887577 hasConcept C192562407 @default.
- W4313887577 hasConcept C200649887 @default.
- W4313887577 hasConcept C41008148 @default.
- W4313887577 hasConcept C41895202 @default.
- W4313887577 hasConcept C519991488 @default.
- W4313887577 hasConcept C520434653 @default.
- W4313887577 hasConcept C78519656 @default.
- W4313887577 hasConcept C98045186 @default.
- W4313887577 hasConceptScore W4313887577C111919701 @default.
- W4313887577 hasConceptScore W4313887577C11413529 @default.
- W4313887577 hasConceptScore W4313887577C119857082 @default.
- W4313887577 hasConceptScore W4313887577C120665830 @default.
- W4313887577 hasConceptScore W4313887577C121332964 @default.
- W4313887577 hasConceptScore W4313887577C127413603 @default.
- W4313887577 hasConceptScore W4313887577C138885662 @default.
- W4313887577 hasConceptScore W4313887577C154945302 @default.
- W4313887577 hasConceptScore W4313887577C158525013 @default.
- W4313887577 hasConceptScore W4313887577C18762648 @default.
- W4313887577 hasConceptScore W4313887577C192562407 @default.
- W4313887577 hasConceptScore W4313887577C200649887 @default.
- W4313887577 hasConceptScore W4313887577C41008148 @default.
- W4313887577 hasConceptScore W4313887577C41895202 @default.
- W4313887577 hasConceptScore W4313887577C519991488 @default.
- W4313887577 hasConceptScore W4313887577C520434653 @default.
- W4313887577 hasConceptScore W4313887577C78519656 @default.
- W4313887577 hasConceptScore W4313887577C98045186 @default.
- W4313887577 hasFunder F4320321114 @default.
- W4313887577 hasIssue "1" @default.
- W4313887577 hasLocation W43138875771 @default.
- W4313887577 hasLocation W43138875772 @default.
- W4313887577 hasOpenAccess W4313887577 @default.
- W4313887577 hasPrimaryLocation W43138875771 @default.
- W4313887577 hasRelatedWork W2014038648 @default.
- W4313887577 hasRelatedWork W2065422553 @default.
- W4313887577 hasRelatedWork W2327204559 @default.
- W4313887577 hasRelatedWork W2479970034 @default.
- W4313887577 hasRelatedWork W2899084033 @default.
- W4313887577 hasRelatedWork W2961085424 @default.
- W4313887577 hasRelatedWork W3099248758 @default.
- W4313887577 hasRelatedWork W3129254793 @default.
- W4313887577 hasRelatedWork W4285225238 @default.
- W4313887577 hasRelatedWork W4306674287 @default.
- W4313887577 hasVolume "8" @default.
- W4313887577 isParatext "false" @default.
- W4313887577 isRetracted "false" @default.
- W4313887577 workType "article" @default.