Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313887592> ?p ?o ?g. }
- W4313887592 endingPage "105362" @default.
- W4313887592 startingPage "105362" @default.
- W4313887592 abstract "Music is a complex system consisting of many dimensions and hierarchically organized information—the organization of which, to date, we do not fully understand. Network science provides a powerful approach to representing such complex systems, from the social networks of people to modelling the underlying network structures of different cognitive mechanisms. In the present research, we explored whether network science methodology can be extended to model the melodic patterns underlying expert improvised music. Using a large corpus of transcribed improvisations, we constructed a network model in which 5-pitch sequences were linked depending on consecutive occurrences, constituting 116,403 nodes (sequences) and 157,429 edges connecting them. We then investigated whether mathematical graph modelling relates to musical characteristics in real-world listening situations via a behavioral experiment paralleling those used to examine language. We found that as melodic distance within the network increased, participants judged melodic sequences as less related. Moreover, the relationship between distance and reaction time (RT) judgements was quadratic: participants slowed in RT up to distance four, then accelerated; a parallel finding to research in language networks. This study offers insights into the hidden network structure of improvised tonal music and suggests that humans are sensitive to the property of melodic distance in this network. More generally, our work demonstrates the similarity between music and language as complex systems, and how network science methods can be used to quantify different aspects of its complexity." @default.
- W4313887592 created "2023-01-10" @default.
- W4313887592 creator A5001629065 @default.
- W4313887592 creator A5028375619 @default.
- W4313887592 creator A5032265453 @default.
- W4313887592 creator A5034610542 @default.
- W4313887592 creator A5042578735 @default.
- W4313887592 creator A5057424987 @default.
- W4313887592 date "2023-04-01" @default.
- W4313887592 modified "2023-10-13" @default.
- W4313887592 title "Representing melodic relationships using network science" @default.
- W4313887592 cites W1765144422 @default.
- W4313887592 cites W1971509570 @default.
- W4313887592 cites W1977145863 @default.
- W4313887592 cites W1985586494 @default.
- W4313887592 cites W1992444821 @default.
- W4313887592 cites W1994889847 @default.
- W4313887592 cites W2005342022 @default.
- W4313887592 cites W2008620264 @default.
- W4313887592 cites W2014043321 @default.
- W4313887592 cites W2015684531 @default.
- W4313887592 cites W2023372837 @default.
- W4313887592 cites W2035726644 @default.
- W4313887592 cites W2039817405 @default.
- W4313887592 cites W2040283575 @default.
- W4313887592 cites W2050113433 @default.
- W4313887592 cites W2055859218 @default.
- W4313887592 cites W2057717413 @default.
- W4313887592 cites W2060720037 @default.
- W4313887592 cites W2070722739 @default.
- W4313887592 cites W2074079067 @default.
- W4313887592 cites W2080877424 @default.
- W4313887592 cites W2081280660 @default.
- W4313887592 cites W2099734890 @default.
- W4313887592 cites W2104292134 @default.
- W4313887592 cites W2121297827 @default.
- W4313887592 cites W2124953625 @default.
- W4313887592 cites W2125297759 @default.
- W4313887592 cites W2127048411 @default.
- W4313887592 cites W2135255848 @default.
- W4313887592 cites W2140295605 @default.
- W4313887592 cites W2141449741 @default.
- W4313887592 cites W2146270470 @default.
- W4313887592 cites W2147901430 @default.
- W4313887592 cites W2149055577 @default.
- W4313887592 cites W2151936673 @default.
- W4313887592 cites W2167822639 @default.
- W4313887592 cites W2327406741 @default.
- W4313887592 cites W2470716712 @default.
- W4313887592 cites W2488736146 @default.
- W4313887592 cites W2513814294 @default.
- W4313887592 cites W2571777482 @default.
- W4313887592 cites W2586457218 @default.
- W4313887592 cites W2770548163 @default.
- W4313887592 cites W2783488042 @default.
- W4313887592 cites W2792569820 @default.
- W4313887592 cites W2801741726 @default.
- W4313887592 cites W2808015875 @default.
- W4313887592 cites W2809256891 @default.
- W4313887592 cites W2809889671 @default.
- W4313887592 cites W2897630418 @default.
- W4313887592 cites W2911434559 @default.
- W4313887592 cites W2918063109 @default.
- W4313887592 cites W2953821062 @default.
- W4313887592 cites W2965966901 @default.
- W4313887592 cites W3007551847 @default.
- W4313887592 cites W3034506286 @default.
- W4313887592 cites W3083307665 @default.
- W4313887592 cites W3103331217 @default.
- W4313887592 cites W3105251471 @default.
- W4313887592 cites W3130924048 @default.
- W4313887592 cites W3145731197 @default.
- W4313887592 cites W3152997392 @default.
- W4313887592 cites W3174169893 @default.
- W4313887592 cites W3181821440 @default.
- W4313887592 cites W3195569410 @default.
- W4313887592 cites W3199667049 @default.
- W4313887592 cites W4206964568 @default.
- W4313887592 cites W4210798573 @default.
- W4313887592 cites W4211091012 @default.
- W4313887592 cites W4282980510 @default.
- W4313887592 doi "https://doi.org/10.1016/j.cognition.2022.105362" @default.
- W4313887592 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36628852" @default.
- W4313887592 hasPublicationYear "2023" @default.
- W4313887592 type Work @default.
- W4313887592 citedByCount "0" @default.
- W4313887592 crossrefType "journal-article" @default.
- W4313887592 hasAuthorship W4313887592A5001629065 @default.
- W4313887592 hasAuthorship W4313887592A5028375619 @default.
- W4313887592 hasAuthorship W4313887592A5032265453 @default.
- W4313887592 hasAuthorship W4313887592A5034610542 @default.
- W4313887592 hasAuthorship W4313887592A5042578735 @default.
- W4313887592 hasAuthorship W4313887592A5057424987 @default.
- W4313887592 hasConcept C103278499 @default.
- W4313887592 hasConcept C115961682 @default.
- W4313887592 hasConcept C136764020 @default.
- W4313887592 hasConcept C137753397 @default.
- W4313887592 hasConcept C142362112 @default.