Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313887774> ?p ?o ?g. }
- W4313887774 endingPage "103743" @default.
- W4313887774 startingPage "103743" @default.
- W4313887774 abstract "So far, the current methods in the clinical application do not facilitate continuous monitoring for pain and are unreliable, especially for vulnerable patients. In contrast, several automated methods have been proposed for this task by using facial features that were extracted independently from every frame of a given sequence. However, the obtained results were poor due to the failure to represent movement dynamics. To solve this problem, this work introduces three distinct methods regarding classification to monitor continuous pain intensity: (1) A Random Forest classifier (RFc) baseline method, (2) Long-Short Term Memory (LSTM) method, and (3) LSTM using sample weighting method (LSTM-SW). In this study, we conducted experiments with 11 datasets regarding classification, then compared results to regression results in Othman et al. (2021). Experimental results showed that the LSTM & LSTM-SW methods for continuous automatic pain intensity recognition performed better than guessing and RFc except with small datasets such as the reduced tonic datasets." @default.
- W4313887774 created "2023-01-10" @default.
- W4313887774 creator A5033366160 @default.
- W4313887774 creator A5035710615 @default.
- W4313887774 creator A5041235927 @default.
- W4313887774 creator A5082851275 @default.
- W4313887774 creator A5086423038 @default.
- W4313887774 creator A5088590417 @default.
- W4313887774 date "2023-03-01" @default.
- W4313887774 modified "2023-10-11" @default.
- W4313887774 title "Classification networks for continuous automatic pain intensity monitoring in video using facial expression on the X-ITE Pain Database" @default.
- W4313887774 cites W1607979445 @default.
- W4313887774 cites W1966677887 @default.
- W4313887774 cites W1985941926 @default.
- W4313887774 cites W2002195055 @default.
- W4313887774 cites W2003321165 @default.
- W4313887774 cites W2015861736 @default.
- W4313887774 cites W2060224146 @default.
- W4313887774 cites W2064675550 @default.
- W4313887774 cites W2066658540 @default.
- W4313887774 cites W2101545465 @default.
- W4313887774 cites W2105479305 @default.
- W4313887774 cites W2128965734 @default.
- W4313887774 cites W2136848157 @default.
- W4313887774 cites W2141403362 @default.
- W4313887774 cites W2143899944 @default.
- W4313887774 cites W2148143831 @default.
- W4313887774 cites W2156567596 @default.
- W4313887774 cites W2162825184 @default.
- W4313887774 cites W2163808566 @default.
- W4313887774 cites W2294311127 @default.
- W4313887774 cites W2330996833 @default.
- W4313887774 cites W2395639500 @default.
- W4313887774 cites W2470957930 @default.
- W4313887774 cites W2508748475 @default.
- W4313887774 cites W2548802826 @default.
- W4313887774 cites W2578461196 @default.
- W4313887774 cites W2609055333 @default.
- W4313887774 cites W2620432076 @default.
- W4313887774 cites W2786403656 @default.
- W4313887774 cites W2787491722 @default.
- W4313887774 cites W2791232079 @default.
- W4313887774 cites W2809399303 @default.
- W4313887774 cites W2898878959 @default.
- W4313887774 cites W2911964244 @default.
- W4313887774 cites W2946833057 @default.
- W4313887774 cites W2947825201 @default.
- W4313887774 cites W2953232014 @default.
- W4313887774 cites W2963236152 @default.
- W4313887774 cites W2980888565 @default.
- W4313887774 cites W2981117535 @default.
- W4313887774 cites W2995153294 @default.
- W4313887774 cites W2996182361 @default.
- W4313887774 cites W3004782605 @default.
- W4313887774 cites W3110091040 @default.
- W4313887774 cites W3162154991 @default.
- W4313887774 doi "https://doi.org/10.1016/j.jvcir.2022.103743" @default.
- W4313887774 hasPublicationYear "2023" @default.
- W4313887774 type Work @default.
- W4313887774 citedByCount "2" @default.
- W4313887774 countsByYear W43138877742023 @default.
- W4313887774 crossrefType "journal-article" @default.
- W4313887774 hasAuthorship W4313887774A5033366160 @default.
- W4313887774 hasAuthorship W4313887774A5035710615 @default.
- W4313887774 hasAuthorship W4313887774A5041235927 @default.
- W4313887774 hasAuthorship W4313887774A5082851275 @default.
- W4313887774 hasAuthorship W4313887774A5086423038 @default.
- W4313887774 hasAuthorship W4313887774A5088590417 @default.
- W4313887774 hasBestOaLocation W43138877741 @default.
- W4313887774 hasConcept C126042441 @default.
- W4313887774 hasConcept C126838900 @default.
- W4313887774 hasConcept C153180895 @default.
- W4313887774 hasConcept C154945302 @default.
- W4313887774 hasConcept C169258074 @default.
- W4313887774 hasConcept C183115368 @default.
- W4313887774 hasConcept C195704467 @default.
- W4313887774 hasConcept C41008148 @default.
- W4313887774 hasConcept C71924100 @default.
- W4313887774 hasConcept C76155785 @default.
- W4313887774 hasConcept C95623464 @default.
- W4313887774 hasConceptScore W4313887774C126042441 @default.
- W4313887774 hasConceptScore W4313887774C126838900 @default.
- W4313887774 hasConceptScore W4313887774C153180895 @default.
- W4313887774 hasConceptScore W4313887774C154945302 @default.
- W4313887774 hasConceptScore W4313887774C169258074 @default.
- W4313887774 hasConceptScore W4313887774C183115368 @default.
- W4313887774 hasConceptScore W4313887774C195704467 @default.
- W4313887774 hasConceptScore W4313887774C41008148 @default.
- W4313887774 hasConceptScore W4313887774C71924100 @default.
- W4313887774 hasConceptScore W4313887774C76155785 @default.
- W4313887774 hasConceptScore W4313887774C95623464 @default.
- W4313887774 hasFunder F4320320875 @default.
- W4313887774 hasFunder F4320320879 @default.
- W4313887774 hasFunder F4320321114 @default.
- W4313887774 hasFunder F4320325530 @default.
- W4313887774 hasFunder F4320335829 @default.
- W4313887774 hasLocation W43138877741 @default.
- W4313887774 hasOpenAccess W4313887774 @default.