Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313888525> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4313888525 abstract "Abstract Heatwaves are extreme near-surface temperature events that can have substantial impacts on ecosystems and society. Early warning systems help to reduce these impacts by helping communities prepare for hazardous climate-related events. However, state-of-the-art prediction systems can often not make accurate forecasts of heatwaves more than two weeks in advance, which are required for advance warnings. We therefore investigate the potential of statistical and machine learning methods to understand and predict central European summer heatwaves on time scales of several weeks. As a first step, we identify the most important regional atmospheric and surface predictors based on previous studies and supported by a correlation analysis: 2-m air temperature, 500-hPa geopotential, precipitation, and soil moisture in central Europe, as well as Mediterranean and North Atlantic sea surface temperatures, and the North Atlantic jet stream. Based on these predictors, we apply machine learning methods to forecast two targets: summer temperature anomalies and the probability of heatwaves for 1–6 weeks lead time at weekly resolution. For each of these two target variables, we use both a linear and a random forest model. The performance of these statistical models decays with lead time, as expected, but outperforms persistence and climatology at all lead times. For lead times longer than two weeks, our machine learning models compete with the ensemble mean of the European Centre for Medium-Range Weather Forecast’s hindcast system. We thus show that machine learning can help improve subseasonal forecasts of summer temperature anomalies and heatwaves. Significance Statement Heatwaves (prolonged extremely warm temperatures) cause thousands of fatalities worldwide each year. These damaging events are becoming even more severe with climate change. This study aims to improve advance predictions of summer heatwaves in central Europe by using statistical and machine learning methods. Machine learning models are shown to compete with conventional physics-based models for forecasting heatwaves more than two weeks in advance. These early warnings can be used to activate effective and timely response plans targeting vulnerable communities and regions, thereby reducing the damage caused by heatwaves." @default.
- W4313888525 created "2023-01-10" @default.
- W4313888525 creator A5019857100 @default.
- W4313888525 creator A5031507526 @default.
- W4313888525 creator A5038597967 @default.
- W4313888525 creator A5043876367 @default.
- W4313888525 creator A5067366813 @default.
- W4313888525 creator A5067733474 @default.
- W4313888525 date "2023-04-01" @default.
- W4313888525 modified "2023-10-07" @default.
- W4313888525 title "Subseasonal Prediction of Central European Summer Heatwaves with Linear and Random Forest Machine Learning Models" @default.
- W4313888525 doi "https://doi.org/10.1175/aies-d-22-0038.1" @default.
- W4313888525 hasPublicationYear "2023" @default.
- W4313888525 type Work @default.
- W4313888525 citedByCount "2" @default.
- W4313888525 countsByYear W43138885252023 @default.
- W4313888525 crossrefType "journal-article" @default.
- W4313888525 hasAuthorship W4313888525A5019857100 @default.
- W4313888525 hasAuthorship W4313888525A5031507526 @default.
- W4313888525 hasAuthorship W4313888525A5038597967 @default.
- W4313888525 hasAuthorship W4313888525A5043876367 @default.
- W4313888525 hasAuthorship W4313888525A5067366813 @default.
- W4313888525 hasAuthorship W4313888525A5067733474 @default.
- W4313888525 hasBestOaLocation W43138885251 @default.
- W4313888525 hasConcept C107054158 @default.
- W4313888525 hasConcept C111368507 @default.
- W4313888525 hasConcept C119857082 @default.
- W4313888525 hasConcept C127313418 @default.
- W4313888525 hasConcept C132651083 @default.
- W4313888525 hasConcept C134097258 @default.
- W4313888525 hasConcept C153294291 @default.
- W4313888525 hasConcept C166957645 @default.
- W4313888525 hasConcept C169258074 @default.
- W4313888525 hasConcept C170061395 @default.
- W4313888525 hasConcept C192901106 @default.
- W4313888525 hasConcept C205649164 @default.
- W4313888525 hasConcept C39432304 @default.
- W4313888525 hasConcept C41008148 @default.
- W4313888525 hasConcept C4646841 @default.
- W4313888525 hasConcept C49204034 @default.
- W4313888525 hasConcept C83002819 @default.
- W4313888525 hasConceptScore W4313888525C107054158 @default.
- W4313888525 hasConceptScore W4313888525C111368507 @default.
- W4313888525 hasConceptScore W4313888525C119857082 @default.
- W4313888525 hasConceptScore W4313888525C127313418 @default.
- W4313888525 hasConceptScore W4313888525C132651083 @default.
- W4313888525 hasConceptScore W4313888525C134097258 @default.
- W4313888525 hasConceptScore W4313888525C153294291 @default.
- W4313888525 hasConceptScore W4313888525C166957645 @default.
- W4313888525 hasConceptScore W4313888525C169258074 @default.
- W4313888525 hasConceptScore W4313888525C170061395 @default.
- W4313888525 hasConceptScore W4313888525C192901106 @default.
- W4313888525 hasConceptScore W4313888525C205649164 @default.
- W4313888525 hasConceptScore W4313888525C39432304 @default.
- W4313888525 hasConceptScore W4313888525C41008148 @default.
- W4313888525 hasConceptScore W4313888525C4646841 @default.
- W4313888525 hasConceptScore W4313888525C49204034 @default.
- W4313888525 hasConceptScore W4313888525C83002819 @default.
- W4313888525 hasFunder F4320306076 @default.
- W4313888525 hasFunder F4320320924 @default.
- W4313888525 hasFunder F4320338453 @default.
- W4313888525 hasIssue "2" @default.
- W4313888525 hasLocation W43138885251 @default.
- W4313888525 hasLocation W43138885252 @default.
- W4313888525 hasOpenAccess W4313888525 @default.
- W4313888525 hasPrimaryLocation W43138885251 @default.
- W4313888525 hasRelatedWork W1576798824 @default.
- W4313888525 hasRelatedWork W1968728830 @default.
- W4313888525 hasRelatedWork W2006891479 @default.
- W4313888525 hasRelatedWork W2025054577 @default.
- W4313888525 hasRelatedWork W2029200410 @default.
- W4313888525 hasRelatedWork W2100280008 @default.
- W4313888525 hasRelatedWork W2218944759 @default.
- W4313888525 hasRelatedWork W247096645 @default.
- W4313888525 hasRelatedWork W3024417993 @default.
- W4313888525 hasRelatedWork W3095171523 @default.
- W4313888525 hasVolume "2" @default.
- W4313888525 isParatext "false" @default.
- W4313888525 isRetracted "false" @default.
- W4313888525 workType "article" @default.