Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313889059> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4313889059 abstract "<p>We propose a novel reconstruction scheme for reconstructing charged particles in digital tracking calorimeters using model-free reinforcement learning aiming to benefit from the rapid progress and success of neural network architectures for tracking without the dependency on simulated or manually labeled data. Here we optimize by trial-and-error a behavior policy acting as a heuristic approximation to the full combinatorial optimization problem, maximizing the physical plausibility of sampled trajectories. In modern data processing pipelines used in high energy physics experiments and related high energy physics driven applications tracking plays an essential role allowing to identify and follow charged particle trajectories traversing particle detectors. Due to the usual high multiplicity of charged particles as well as the occurring physical interactions, randomly deflecting the particles from their initial path, the reconstruction is a challenging undertaking, requiring fast, accurate and robust algorithms. Our approach works on graph-structured data, capturing possible track hypotheses through edge connections between particles in the sensitive detector layers. We demonstrate in a comprehensive study on simulated data generated for a particle detector used for proton computed tomography, the overall high potential as well as the competitiveness of our approach compared to a heuristic search algorithm and a model trained on ground truth information. Finally, we point out limitations of our approach, guiding towards a robust foundation for further development of reinforcement learning based tracking algorithms in high energy physics.</p>" @default.
- W4313889059 created "2023-01-10" @default.
- W4313889059 creator A5023667410 @default.
- W4313889059 creator A5048833875 @default.
- W4313889059 creator A5058747306 @default.
- W4313889059 date "2023-01-09" @default.
- W4313889059 modified "2023-10-16" @default.
- W4313889059 title "Towards Neural Charged Particle Tracking in Digital Tracking Calorimeters with Reinforcement Learning" @default.
- W4313889059 doi "https://doi.org/10.36227/techrxiv.21717323.v2" @default.
- W4313889059 hasPublicationYear "2023" @default.
- W4313889059 type Work @default.
- W4313889059 citedByCount "0" @default.
- W4313889059 crossrefType "posted-content" @default.
- W4313889059 hasAuthorship W4313889059A5023667410 @default.
- W4313889059 hasAuthorship W4313889059A5048833875 @default.
- W4313889059 hasAuthorship W4313889059A5058747306 @default.
- W4313889059 hasBestOaLocation W43138890591 @default.
- W4313889059 hasConcept C11413529 @default.
- W4313889059 hasConcept C121332964 @default.
- W4313889059 hasConcept C145148216 @default.
- W4313889059 hasConcept C154945302 @default.
- W4313889059 hasConcept C15744967 @default.
- W4313889059 hasConcept C173801870 @default.
- W4313889059 hasConcept C19417346 @default.
- W4313889059 hasConcept C2775936607 @default.
- W4313889059 hasConcept C35048267 @default.
- W4313889059 hasConcept C41008148 @default.
- W4313889059 hasConcept C50644808 @default.
- W4313889059 hasConcept C62520636 @default.
- W4313889059 hasConcept C76155785 @default.
- W4313889059 hasConcept C94915269 @default.
- W4313889059 hasConcept C97541855 @default.
- W4313889059 hasConceptScore W4313889059C11413529 @default.
- W4313889059 hasConceptScore W4313889059C121332964 @default.
- W4313889059 hasConceptScore W4313889059C145148216 @default.
- W4313889059 hasConceptScore W4313889059C154945302 @default.
- W4313889059 hasConceptScore W4313889059C15744967 @default.
- W4313889059 hasConceptScore W4313889059C173801870 @default.
- W4313889059 hasConceptScore W4313889059C19417346 @default.
- W4313889059 hasConceptScore W4313889059C2775936607 @default.
- W4313889059 hasConceptScore W4313889059C35048267 @default.
- W4313889059 hasConceptScore W4313889059C41008148 @default.
- W4313889059 hasConceptScore W4313889059C50644808 @default.
- W4313889059 hasConceptScore W4313889059C62520636 @default.
- W4313889059 hasConceptScore W4313889059C76155785 @default.
- W4313889059 hasConceptScore W4313889059C94915269 @default.
- W4313889059 hasConceptScore W4313889059C97541855 @default.
- W4313889059 hasLocation W43138890591 @default.
- W4313889059 hasLocation W43138890592 @default.
- W4313889059 hasLocation W43138890593 @default.
- W4313889059 hasOpenAccess W4313889059 @default.
- W4313889059 hasPrimaryLocation W43138890591 @default.
- W4313889059 hasRelatedWork W137585119 @default.
- W4313889059 hasRelatedWork W2044425395 @default.
- W4313889059 hasRelatedWork W2053209941 @default.
- W4313889059 hasRelatedWork W2060052123 @default.
- W4313889059 hasRelatedWork W2078512081 @default.
- W4313889059 hasRelatedWork W260766989 @default.
- W4313889059 hasRelatedWork W2959276766 @default.
- W4313889059 hasRelatedWork W3074294383 @default.
- W4313889059 hasRelatedWork W4206669594 @default.
- W4313889059 hasRelatedWork W4295941380 @default.
- W4313889059 isParatext "false" @default.
- W4313889059 isRetracted "false" @default.
- W4313889059 workType "article" @default.