Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313889431> ?p ?o ?g. }
- W4313889431 endingPage "906" @default.
- W4313889431 startingPage "906" @default.
- W4313889431 abstract "In recent years, feature selection has emerged as a major challenge in machine learning. In this paper, considering the promising performance of metaheuristics on different types of applications, six physics-inspired metaphor algorithms are employed for this problem. To evaluate the capability of dimensionality reduction in these algorithms, six diverse-natured datasets are used. The performance is compared in terms of the average number of features selected (AFS), accuracy, fitness, convergence capabilities, and computational cost. It is found through experiments that the accuracy and fitness of the Equilibrium Optimizer (EO) are comparatively better than the others. Finally, the average rank from the perspective of average fitness, average accuracy, and AFS shows that EO outperforms all other algorithms." @default.
- W4313889431 created "2023-01-10" @default.
- W4313889431 creator A5011561617 @default.
- W4313889431 creator A5073167751 @default.
- W4313889431 creator A5077725822 @default.
- W4313889431 creator A5085509163 @default.
- W4313889431 creator A5086551021 @default.
- W4313889431 date "2023-01-09" @default.
- W4313889431 modified "2023-10-14" @default.
- W4313889431 title "Analyzing Physics-Inspired Metaheuristic Algorithms in Feature Selection with K-Nearest-Neighbor" @default.
- W4313889431 cites W1487321909 @default.
- W4313889431 cites W2047094503 @default.
- W4313889431 cites W2047505096 @default.
- W4313889431 cites W2056811412 @default.
- W4313889431 cites W2061438946 @default.
- W4313889431 cites W2072955302 @default.
- W4313889431 cites W2087016914 @default.
- W4313889431 cites W2151554678 @default.
- W4313889431 cites W2154639585 @default.
- W4313889431 cites W2168081761 @default.
- W4313889431 cites W2232317135 @default.
- W4313889431 cites W2290883490 @default.
- W4313889431 cites W2415359207 @default.
- W4313889431 cites W2557517625 @default.
- W4313889431 cites W2612473079 @default.
- W4313889431 cites W2753434909 @default.
- W4313889431 cites W2889545660 @default.
- W4313889431 cites W2890190333 @default.
- W4313889431 cites W2897007886 @default.
- W4313889431 cites W2903452648 @default.
- W4313889431 cites W2962182762 @default.
- W4313889431 cites W2985845430 @default.
- W4313889431 cites W3009939354 @default.
- W4313889431 cites W3012087746 @default.
- W4313889431 cites W3034644205 @default.
- W4313889431 cites W3043211958 @default.
- W4313889431 cites W3092371419 @default.
- W4313889431 cites W3156034637 @default.
- W4313889431 cites W3192254112 @default.
- W4313889431 cites W3205136130 @default.
- W4313889431 cites W3210107380 @default.
- W4313889431 cites W3217195399 @default.
- W4313889431 cites W4230167402 @default.
- W4313889431 doi "https://doi.org/10.3390/app13020906" @default.
- W4313889431 hasPublicationYear "2023" @default.
- W4313889431 type Work @default.
- W4313889431 citedByCount "7" @default.
- W4313889431 countsByYear W43138894312023 @default.
- W4313889431 crossrefType "journal-article" @default.
- W4313889431 hasAuthorship W4313889431A5011561617 @default.
- W4313889431 hasAuthorship W4313889431A5073167751 @default.
- W4313889431 hasAuthorship W4313889431A5077725822 @default.
- W4313889431 hasAuthorship W4313889431A5085509163 @default.
- W4313889431 hasAuthorship W4313889431A5086551021 @default.
- W4313889431 hasBestOaLocation W43138894311 @default.
- W4313889431 hasConcept C109718341 @default.
- W4313889431 hasConcept C111030470 @default.
- W4313889431 hasConcept C113238511 @default.
- W4313889431 hasConcept C11413529 @default.
- W4313889431 hasConcept C114614502 @default.
- W4313889431 hasConcept C119857082 @default.
- W4313889431 hasConcept C12713177 @default.
- W4313889431 hasConcept C138885662 @default.
- W4313889431 hasConcept C148483581 @default.
- W4313889431 hasConcept C154945302 @default.
- W4313889431 hasConcept C162324750 @default.
- W4313889431 hasConcept C164226766 @default.
- W4313889431 hasConcept C2776401178 @default.
- W4313889431 hasConcept C2777303404 @default.
- W4313889431 hasConcept C33923547 @default.
- W4313889431 hasConcept C41008148 @default.
- W4313889431 hasConcept C41895202 @default.
- W4313889431 hasConcept C50522688 @default.
- W4313889431 hasConcept C70518039 @default.
- W4313889431 hasConceptScore W4313889431C109718341 @default.
- W4313889431 hasConceptScore W4313889431C111030470 @default.
- W4313889431 hasConceptScore W4313889431C113238511 @default.
- W4313889431 hasConceptScore W4313889431C11413529 @default.
- W4313889431 hasConceptScore W4313889431C114614502 @default.
- W4313889431 hasConceptScore W4313889431C119857082 @default.
- W4313889431 hasConceptScore W4313889431C12713177 @default.
- W4313889431 hasConceptScore W4313889431C138885662 @default.
- W4313889431 hasConceptScore W4313889431C148483581 @default.
- W4313889431 hasConceptScore W4313889431C154945302 @default.
- W4313889431 hasConceptScore W4313889431C162324750 @default.
- W4313889431 hasConceptScore W4313889431C164226766 @default.
- W4313889431 hasConceptScore W4313889431C2776401178 @default.
- W4313889431 hasConceptScore W4313889431C2777303404 @default.
- W4313889431 hasConceptScore W4313889431C33923547 @default.
- W4313889431 hasConceptScore W4313889431C41008148 @default.
- W4313889431 hasConceptScore W4313889431C41895202 @default.
- W4313889431 hasConceptScore W4313889431C50522688 @default.
- W4313889431 hasConceptScore W4313889431C70518039 @default.
- W4313889431 hasIssue "2" @default.
- W4313889431 hasLocation W43138894311 @default.
- W4313889431 hasOpenAccess W4313889431 @default.
- W4313889431 hasPrimaryLocation W43138894311 @default.
- W4313889431 hasRelatedWork W2154108701 @default.