Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313889440> ?p ?o ?g. }
- W4313889440 endingPage "806" @default.
- W4313889440 startingPage "806" @default.
- W4313889440 abstract "Artificial intelligence is considered to be a significant technology for driving the future evolution of smart manufacturing environments. At the same time, automated guided vehicles (AGVs) play an essential role in manufacturing systems due to their potential to improve internal logistics by increasing production flexibility. Thereby, the productivity of the entire system relies on the quality of the schedule, which can achieve production cost savings by minimizing delays and the total makespan. However, traditional scheduling algorithms often have difficulties in adapting to changing environment conditions, and the performance of a selected algorithm depends on the individual scheduling problem. Therefore, this paper aimed to analyze the scheduling problem classes of AGVs by applying design science research to develop an algorithm selection approach. The designed artifact addressed a catalogue of characteristics that used several machine learning algorithms to find the optimal solution strategy for the intended scheduling problem. The contribution of this paper is the creation of an algorithm selection method that automatically selects a scheduling algorithm, depending on the problem class and the algorithm space. In this way, production efficiency can be increased by dynamically adapting the AGV schedules. A computational study with benchmark literature instances unveiled the successful implementation of constraint programming solvers for solving JSSP and FJSSP scheduling problems and machine learning algorithms for predicting the most promising solver. The performance of the solvers strongly depended on the given problem class and the problem instance. Consequently, the overall production performance increased by selecting the algorithms per instance. A field experiment in the learning factory at Reutlingen University enabled the validation of the approach within a running production scenario." @default.
- W4313889440 created "2023-01-10" @default.
- W4313889440 creator A5005661721 @default.
- W4313889440 creator A5075887276 @default.
- W4313889440 creator A5076656559 @default.
- W4313889440 date "2023-01-06" @default.
- W4313889440 modified "2023-10-16" @default.
- W4313889440 title "Choosing Solution Strategies for Scheduling Automated Guided Vehicles in Production Using Machine Learning" @default.
- W4313889440 cites W1510816548 @default.
- W4313889440 cites W1579921200 @default.
- W4313889440 cites W159012016 @default.
- W4313889440 cites W1901616594 @default.
- W4313889440 cites W2003746847 @default.
- W4313889440 cites W2004867005 @default.
- W4313889440 cites W2013885755 @default.
- W4313889440 cites W2014868958 @default.
- W4313889440 cites W2030370304 @default.
- W4313889440 cites W2046437335 @default.
- W4313889440 cites W2046678043 @default.
- W4313889440 cites W2051358678 @default.
- W4313889440 cites W2060331334 @default.
- W4313889440 cites W2067884717 @default.
- W4313889440 cites W2071306171 @default.
- W4313889440 cites W2088273530 @default.
- W4313889440 cites W2088304441 @default.
- W4313889440 cites W2122736695 @default.
- W4313889440 cites W2145079270 @default.
- W4313889440 cites W2145493798 @default.
- W4313889440 cites W2147148915 @default.
- W4313889440 cites W2156391157 @default.
- W4313889440 cites W2265549541 @default.
- W4313889440 cites W2593221340 @default.
- W4313889440 cites W2597083474 @default.
- W4313889440 cites W2765785306 @default.
- W4313889440 cites W2941110559 @default.
- W4313889440 cites W2964523010 @default.
- W4313889440 cites W2967783393 @default.
- W4313889440 cites W3047863327 @default.
- W4313889440 cites W3049468855 @default.
- W4313889440 cites W3085857580 @default.
- W4313889440 cites W3125055412 @default.
- W4313889440 cites W3130342639 @default.
- W4313889440 cites W3151685851 @default.
- W4313889440 cites W3159134414 @default.
- W4313889440 cites W3184078521 @default.
- W4313889440 cites W3212240286 @default.
- W4313889440 cites W3215999497 @default.
- W4313889440 cites W3216999894 @default.
- W4313889440 cites W368346290 @default.
- W4313889440 cites W4200107700 @default.
- W4313889440 cites W4206566965 @default.
- W4313889440 cites W4226210625 @default.
- W4313889440 cites W4236137412 @default.
- W4313889440 cites W4285025197 @default.
- W4313889440 cites W4285063218 @default.
- W4313889440 cites W4285227090 @default.
- W4313889440 cites W4286355535 @default.
- W4313889440 doi "https://doi.org/10.3390/app13020806" @default.
- W4313889440 hasPublicationYear "2023" @default.
- W4313889440 type Work @default.
- W4313889440 citedByCount "2" @default.
- W4313889440 countsByYear W43138894402023 @default.
- W4313889440 crossrefType "journal-article" @default.
- W4313889440 hasAuthorship W4313889440A5005661721 @default.
- W4313889440 hasAuthorship W4313889440A5075887276 @default.
- W4313889440 hasAuthorship W4313889440A5076656559 @default.
- W4313889440 hasBestOaLocation W43138894401 @default.
- W4313889440 hasConcept C111919701 @default.
- W4313889440 hasConcept C126255220 @default.
- W4313889440 hasConcept C127413603 @default.
- W4313889440 hasConcept C13736549 @default.
- W4313889440 hasConcept C154945302 @default.
- W4313889440 hasConcept C199360897 @default.
- W4313889440 hasConcept C206729178 @default.
- W4313889440 hasConcept C2778770139 @default.
- W4313889440 hasConcept C33923547 @default.
- W4313889440 hasConcept C41008148 @default.
- W4313889440 hasConcept C55416958 @default.
- W4313889440 hasConcept C68387754 @default.
- W4313889440 hasConceptScore W4313889440C111919701 @default.
- W4313889440 hasConceptScore W4313889440C126255220 @default.
- W4313889440 hasConceptScore W4313889440C127413603 @default.
- W4313889440 hasConceptScore W4313889440C13736549 @default.
- W4313889440 hasConceptScore W4313889440C154945302 @default.
- W4313889440 hasConceptScore W4313889440C199360897 @default.
- W4313889440 hasConceptScore W4313889440C206729178 @default.
- W4313889440 hasConceptScore W4313889440C2778770139 @default.
- W4313889440 hasConceptScore W4313889440C33923547 @default.
- W4313889440 hasConceptScore W4313889440C41008148 @default.
- W4313889440 hasConceptScore W4313889440C55416958 @default.
- W4313889440 hasConceptScore W4313889440C68387754 @default.
- W4313889440 hasIssue "2" @default.
- W4313889440 hasLocation W43138894401 @default.
- W4313889440 hasLocation W43138894402 @default.
- W4313889440 hasOpenAccess W4313889440 @default.
- W4313889440 hasPrimaryLocation W43138894401 @default.
- W4313889440 hasRelatedWork W1470192148 @default.
- W4313889440 hasRelatedWork W2068686822 @default.