Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313889524> ?p ?o ?g. }
- W4313889524 abstract "Abstract Graph-based learning and estimation are fundamental problems in various applications involving power, social, and brain networks, to name a few. While learning pair-wise interactions in network data is a well-studied problem, discovering higher-order interactions among subsets of nodes is still not yet fully explored. To this end, encompassing and leveraging (non)linear structural equation models as well as vector autoregressions, this paper proposes autoregressive graph Volterra models (AGVMs) that can capture not only the connectivity between nodes but also higher-order interactions presented in the networked data. The proposed overarching model inherits the identifiability and expressibility of the Volterra series. Furthermore, two tailored algorithms based on the proposed AGVM are put forth for topology identification and link prediction in distribution grids and social networks, respectively. Real-data experiments on different real-world collaboration networks highlight the impact of higher-order interactions in our approach, yielding discernible differences relative to existing methods." @default.
- W4313889524 created "2023-01-10" @default.
- W4313889524 creator A5015683686 @default.
- W4313889524 creator A5026758314 @default.
- W4313889524 creator A5084040981 @default.
- W4313889524 creator A5089101522 @default.
- W4313889524 date "2023-01-09" @default.
- W4313889524 modified "2023-10-18" @default.
- W4313889524 title "Autoregressive graph Volterra models and applications" @default.
- W4313889524 cites W1603920809 @default.
- W4313889524 cites W1954241630 @default.
- W4313889524 cites W1978282571 @default.
- W4313889524 cites W1991631960 @default.
- W4313889524 cites W2013591617 @default.
- W4313889524 cites W2015418199 @default.
- W4313889524 cites W2069224171 @default.
- W4313889524 cites W2085357360 @default.
- W4313889524 cites W2100976406 @default.
- W4313889524 cites W2121194215 @default.
- W4313889524 cites W2153079265 @default.
- W4313889524 cites W2153624566 @default.
- W4313889524 cites W2160068178 @default.
- W4313889524 cites W2161597212 @default.
- W4313889524 cites W2162891073 @default.
- W4313889524 cites W2163306439 @default.
- W4313889524 cites W2166660524 @default.
- W4313889524 cites W2171845477 @default.
- W4313889524 cites W2399736870 @default.
- W4313889524 cites W2528567371 @default.
- W4313889524 cites W2541678912 @default.
- W4313889524 cites W2787887656 @default.
- W4313889524 cites W2791289146 @default.
- W4313889524 cites W2798585159 @default.
- W4313889524 cites W2799216635 @default.
- W4313889524 cites W2885408128 @default.
- W4313889524 cites W2963728452 @default.
- W4313889524 cites W2965585318 @default.
- W4313889524 cites W2991859550 @default.
- W4313889524 cites W3007659783 @default.
- W4313889524 cites W3016089557 @default.
- W4313889524 cites W3016115436 @default.
- W4313889524 cites W3037826211 @default.
- W4313889524 cites W3098546508 @default.
- W4313889524 cites W3105663757 @default.
- W4313889524 cites W3202514878 @default.
- W4313889524 cites W4214811799 @default.
- W4313889524 cites W4232932184 @default.
- W4313889524 cites W4301266338 @default.
- W4313889524 doi "https://doi.org/10.1186/s13634-022-00960-6" @default.
- W4313889524 hasPublicationYear "2023" @default.
- W4313889524 type Work @default.
- W4313889524 citedByCount "0" @default.
- W4313889524 crossrefType "journal-article" @default.
- W4313889524 hasAuthorship W4313889524A5015683686 @default.
- W4313889524 hasAuthorship W4313889524A5026758314 @default.
- W4313889524 hasAuthorship W4313889524A5084040981 @default.
- W4313889524 hasAuthorship W4313889524A5089101522 @default.
- W4313889524 hasBestOaLocation W43138895241 @default.
- W4313889524 hasConcept C116834253 @default.
- W4313889524 hasConcept C119857082 @default.
- W4313889524 hasConcept C121332964 @default.
- W4313889524 hasConcept C122770356 @default.
- W4313889524 hasConcept C132525143 @default.
- W4313889524 hasConcept C149782125 @default.
- W4313889524 hasConcept C154945302 @default.
- W4313889524 hasConcept C158622935 @default.
- W4313889524 hasConcept C159877910 @default.
- W4313889524 hasConcept C2778532037 @default.
- W4313889524 hasConcept C33923547 @default.
- W4313889524 hasConcept C41008148 @default.
- W4313889524 hasConcept C59822182 @default.
- W4313889524 hasConcept C62520636 @default.
- W4313889524 hasConcept C80444323 @default.
- W4313889524 hasConcept C86803240 @default.
- W4313889524 hasConceptScore W4313889524C116834253 @default.
- W4313889524 hasConceptScore W4313889524C119857082 @default.
- W4313889524 hasConceptScore W4313889524C121332964 @default.
- W4313889524 hasConceptScore W4313889524C122770356 @default.
- W4313889524 hasConceptScore W4313889524C132525143 @default.
- W4313889524 hasConceptScore W4313889524C149782125 @default.
- W4313889524 hasConceptScore W4313889524C154945302 @default.
- W4313889524 hasConceptScore W4313889524C158622935 @default.
- W4313889524 hasConceptScore W4313889524C159877910 @default.
- W4313889524 hasConceptScore W4313889524C2778532037 @default.
- W4313889524 hasConceptScore W4313889524C33923547 @default.
- W4313889524 hasConceptScore W4313889524C41008148 @default.
- W4313889524 hasConceptScore W4313889524C59822182 @default.
- W4313889524 hasConceptScore W4313889524C62520636 @default.
- W4313889524 hasConceptScore W4313889524C80444323 @default.
- W4313889524 hasConceptScore W4313889524C86803240 @default.
- W4313889524 hasFunder F4320306076 @default.
- W4313889524 hasIssue "1" @default.
- W4313889524 hasLocation W43138895241 @default.
- W4313889524 hasLocation W43138895242 @default.
- W4313889524 hasOpenAccess W4313889524 @default.
- W4313889524 hasPrimaryLocation W43138895241 @default.
- W4313889524 hasRelatedWork W1684254482 @default.
- W4313889524 hasRelatedWork W2471461307 @default.
- W4313889524 hasRelatedWork W2681017617 @default.
- W4313889524 hasRelatedWork W2961085424 @default.