Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313889909> ?p ?o ?g. }
- W4313889909 endingPage "734" @default.
- W4313889909 startingPage "734" @default.
- W4313889909 abstract "Understanding actions in videos remains a significant challenge in computer vision, which has been the subject of several pieces of research in the last decades. Convolutional neural networks (CNN) are a significant component of this topic and play a crucial role in the renown of Deep Learning. Inspired by the human vision system, CNN has been applied to visual data exploitation and has solved various challenges in various computer vision tasks and video/image analysis, including action recognition (AR). However, not long ago, along with the achievement of the transformer in natural language processing (NLP), it began to set new trends in vision tasks, which has created a discussion around whether the Vision Transformer models (ViT) will replace CNN in action recognition in video clips. This paper conducts this trending topic in detail, the study of CNN and Transformer for Action Recognition separately and a comparative study of the accuracy-complexity trade-off. Finally, based on the performance analysis's outcome, the question of whether CNN or Vision Transformers will win the race will be discussed." @default.
- W4313889909 created "2023-01-10" @default.
- W4313889909 creator A5007232302 @default.
- W4313889909 creator A5007708163 @default.
- W4313889909 creator A5010565140 @default.
- W4313889909 creator A5036536948 @default.
- W4313889909 creator A5042994204 @default.
- W4313889909 creator A5049940008 @default.
- W4313889909 creator A5064506479 @default.
- W4313889909 date "2023-01-09" @default.
- W4313889909 modified "2023-10-14" @default.
- W4313889909 title "Convolutional Neural Networks or Vision Transformers: Who Will Win the Race for Action Recognitions in Visual Data?" @default.
- W4313889909 cites W1536680647 @default.
- W4313889909 cites W1849277567 @default.
- W4313889909 cites W1998808035 @default.
- W4313889909 cites W2015547193 @default.
- W4313889909 cites W2016053056 @default.
- W4313889909 cites W2073823857 @default.
- W4313889909 cites W2097117768 @default.
- W4313889909 cites W2101926813 @default.
- W4313889909 cites W2102605133 @default.
- W4313889909 cites W2108598243 @default.
- W4313889909 cites W2116360511 @default.
- W4313889909 cites W2126579184 @default.
- W4313889909 cites W2145287260 @default.
- W4313889909 cites W2194775991 @default.
- W4313889909 cites W2507009361 @default.
- W4313889909 cites W2570343428 @default.
- W4313889909 cites W2625366777 @default.
- W4313889909 cites W2770804203 @default.
- W4313889909 cites W2794284562 @default.
- W4313889909 cites W2886335102 @default.
- W4313889909 cites W2913972737 @default.
- W4313889909 cites W2914713150 @default.
- W4313889909 cites W2923014074 @default.
- W4313889909 cites W2937443896 @default.
- W4313889909 cites W2944006115 @default.
- W4313889909 cites W2948058585 @default.
- W4313889909 cites W2948246283 @default.
- W4313889909 cites W2962934715 @default.
- W4313889909 cites W2963037989 @default.
- W4313889909 cites W2963076818 @default.
- W4313889909 cites W2963111876 @default.
- W4313889909 cites W2963159690 @default.
- W4313889909 cites W2963323070 @default.
- W4313889909 cites W2963524571 @default.
- W4313889909 cites W2963563276 @default.
- W4313889909 cites W2964134613 @default.
- W4313889909 cites W2971105107 @default.
- W4313889909 cites W2979826702 @default.
- W4313889909 cites W2980088508 @default.
- W4313889909 cites W2984287396 @default.
- W4313889909 cites W2985331920 @default.
- W4313889909 cites W2988630963 @default.
- W4313889909 cites W2990152177 @default.
- W4313889909 cites W2990503944 @default.
- W4313889909 cites W3010212250 @default.
- W4313889909 cites W3014641072 @default.
- W4313889909 cites W3034768625 @default.
- W4313889909 cites W3043840704 @default.
- W4313889909 cites W3081111248 @default.
- W4313889909 cites W3087845270 @default.
- W4313889909 cites W3096609285 @default.
- W4313889909 cites W3101294892 @default.
- W4313889909 cites W3106250896 @default.
- W4313889909 cites W3108892828 @default.
- W4313889909 cites W3114333203 @default.
- W4313889909 cites W3121523901 @default.
- W4313889909 cites W3128636476 @default.
- W4313889909 cites W3140854437 @default.
- W4313889909 cites W3157802818 @default.
- W4313889909 cites W3159611211 @default.
- W4313889909 cites W3162566909 @default.
- W4313889909 cites W3172990466 @default.
- W4313889909 cites W3174849255 @default.
- W4313889909 cites W3185273257 @default.
- W4313889909 cites W3189084189 @default.
- W4313889909 cites W3199527468 @default.
- W4313889909 cites W3203634062 @default.
- W4313889909 cites W3206988257 @default.
- W4313889909 cites W3209859545 @default.
- W4313889909 cites W3210279979 @default.
- W4313889909 cites W4206706211 @default.
- W4313889909 cites W4213019189 @default.
- W4313889909 cites W4214516465 @default.
- W4313889909 cites W4214612132 @default.
- W4313889909 cites W4221049076 @default.
- W4313889909 cites W4282981352 @default.
- W4313889909 cites W4309125257 @default.
- W4313889909 cites W4312263092 @default.
- W4313889909 cites W4312356418 @default.
- W4313889909 cites W4312560592 @default.
- W4313889909 cites W4312658081 @default.
- W4313889909 cites W4312757522 @default.
- W4313889909 cites W4313166619 @default.
- W4313889909 cites W639708223 @default.
- W4313889909 doi "https://doi.org/10.3390/s23020734" @default.
- W4313889909 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36679530" @default.