Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313889970> ?p ?o ?g. }
- W4313889970 endingPage "703" @default.
- W4313889970 startingPage "703" @default.
- W4313889970 abstract "The development of Brain–Computer Interfaces based on Motor Imagery (MI) tasks is a relevant research topic worldwide. The design of accurate and reliable BCI systems remains a challenge, mainly in terms of increasing performance and usability. Classifiers based on Bayesian Neural Networks are proposed in this work by using the variational inference, aiming to analyze the uncertainty during the MI prediction. An adaptive threshold scheme is proposed here for MI classification with a reject option, and its performance on both datasets 2a and 2b from BCI Competition IV is compared with other approaches based on thresholds. The results using subject-specific and non-subject-specific training strategies are encouraging. From the uncertainty analysis, considerations for reducing computational cost are proposed for future work." @default.
- W4313889970 created "2023-01-10" @default.
- W4313889970 creator A5008716549 @default.
- W4313889970 creator A5011430192 @default.
- W4313889970 creator A5045898142 @default.
- W4313889970 creator A5068674039 @default.
- W4313889970 creator A5077866767 @default.
- W4313889970 creator A5080033507 @default.
- W4313889970 creator A5089545009 @default.
- W4313889970 date "2023-01-08" @default.
- W4313889970 modified "2023-10-15" @default.
- W4313889970 title "Robust Motor Imagery Tasks Classification Approach Using Bayesian Neural Network" @default.
- W4313889970 cites W1871047159 @default.
- W4313889970 cites W1969878365 @default.
- W4313889970 cites W2004092686 @default.
- W4313889970 cites W2006082701 @default.
- W4313889970 cites W2010371409 @default.
- W4313889970 cites W2039340285 @default.
- W4313889970 cites W2059713037 @default.
- W4313889970 cites W2087287335 @default.
- W4313889970 cites W2106006415 @default.
- W4313889970 cites W2110484872 @default.
- W4313889970 cites W2116308679 @default.
- W4313889970 cites W2118377301 @default.
- W4313889970 cites W2118681819 @default.
- W4313889970 cites W2119163516 @default.
- W4313889970 cites W2137049752 @default.
- W4313889970 cites W2140413964 @default.
- W4313889970 cites W2142280324 @default.
- W4313889970 cites W2163727886 @default.
- W4313889970 cites W2169296125 @default.
- W4313889970 cites W21769058 @default.
- W4313889970 cites W2509948470 @default.
- W4313889970 cites W2557301950 @default.
- W4313889970 cites W2618530766 @default.
- W4313889970 cites W2741907166 @default.
- W4313889970 cites W2743838086 @default.
- W4313889970 cites W2911969890 @default.
- W4313889970 cites W2913246999 @default.
- W4313889970 cites W2915893085 @default.
- W4313889970 cites W2951965145 @default.
- W4313889970 cites W2954214015 @default.
- W4313889970 cites W2963012093 @default.
- W4313889970 cites W2963355311 @default.
- W4313889970 cites W2964252002 @default.
- W4313889970 cites W2968600287 @default.
- W4313889970 cites W2980163862 @default.
- W4313889970 cites W2990721662 @default.
- W4313889970 cites W2997287432 @default.
- W4313889970 cites W3003475284 @default.
- W4313889970 cites W3009764464 @default.
- W4313889970 cites W3022092973 @default.
- W4313889970 cites W3027787227 @default.
- W4313889970 cites W3032297297 @default.
- W4313889970 cites W3049464275 @default.
- W4313889970 cites W3085904552 @default.
- W4313889970 cites W3090080743 @default.
- W4313889970 cites W3093945256 @default.
- W4313889970 cites W3102100346 @default.
- W4313889970 cites W3103557498 @default.
- W4313889970 cites W3103663607 @default.
- W4313889970 cites W3135126155 @default.
- W4313889970 cites W3155932944 @default.
- W4313889970 cites W3175061495 @default.
- W4313889970 cites W3177536598 @default.
- W4313889970 cites W3210027319 @default.
- W4313889970 doi "https://doi.org/10.3390/s23020703" @default.
- W4313889970 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36679501" @default.
- W4313889970 hasPublicationYear "2023" @default.
- W4313889970 type Work @default.
- W4313889970 citedByCount "3" @default.
- W4313889970 countsByYear W43138899702023 @default.
- W4313889970 crossrefType "journal-article" @default.
- W4313889970 hasAuthorship W4313889970A5008716549 @default.
- W4313889970 hasAuthorship W4313889970A5011430192 @default.
- W4313889970 hasAuthorship W4313889970A5045898142 @default.
- W4313889970 hasAuthorship W4313889970A5068674039 @default.
- W4313889970 hasAuthorship W4313889970A5077866767 @default.
- W4313889970 hasAuthorship W4313889970A5080033507 @default.
- W4313889970 hasAuthorship W4313889970A5089545009 @default.
- W4313889970 hasBestOaLocation W43138899701 @default.
- W4313889970 hasConcept C107457646 @default.
- W4313889970 hasConcept C107673813 @default.
- W4313889970 hasConcept C118552586 @default.
- W4313889970 hasConcept C119857082 @default.
- W4313889970 hasConcept C124101348 @default.
- W4313889970 hasConcept C134306372 @default.
- W4313889970 hasConcept C154945302 @default.
- W4313889970 hasConcept C15744967 @default.
- W4313889970 hasConcept C160234255 @default.
- W4313889970 hasConcept C170130773 @default.
- W4313889970 hasConcept C173201364 @default.
- W4313889970 hasConcept C2776214188 @default.
- W4313889970 hasConcept C33923547 @default.
- W4313889970 hasConcept C41008148 @default.
- W4313889970 hasConcept C50644808 @default.
- W4313889970 hasConcept C522805319 @default.
- W4313889970 hasConcept C54808283 @default.