Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313890777> ?p ?o ?g. }
- W4313890777 abstract "Introduction: Bronchopulmonary dysplasia (BPD) is a life-threatening lung illness that affects premature infants and has a high incidence and mortality. Using interpretable machine learning, we aimed to investigate the involvement of endoplasmic reticulum (ER) stress-related genes (ERSGs) in BPD patients. Methods: We evaluated the expression profiles of endoplasmic reticulum stress-related genes and immune features in bronchopulmonary dysplasia using the GSE32472 dataset. The endoplasmic reticulum stress-related gene-based molecular clusters and associated immune cell infiltration were studied using 62 bronchopulmonary dysplasia samples. Cluster-specific differentially expressed genes (DEGs) were identified utilizing the WGCNA technique. The optimum machine model was applied after comparing its performance with that of the generalized linear model, the extreme Gradient Boosting, the support vector machine (SVM) model, and the random forest model. Validation of the prediction efficiency was done by the use of a calibration curve, nomogram, decision curve analysis, and an external data set. Results: The bronchopulmonary dysplasia samples were compared to the control samples, and the dysregulated endoplasmic reticulum stress-related genes and activated immunological responses were analyzed. In bronchopulmonary dysplasia, two distinct molecular clusters associated with endoplasmic reticulum stress were identified. The analysis of immune cell infiltration indicated a considerable difference in levels of immunity between the various clusters. As measured by residual and root mean square error, as well as the area under the curve, the support vector machine machine model showed the greatest discriminative capacity. In the end, an support vector machine model integrating five genes was developed, and its performance was shown to be excellent on an external validation dataset. The effectiveness in predicting bronchopulmonary dysplasia subtypes was further established by decision curves, calibration curves, and nomogram analyses. Conclusion: We developed a potential prediction model to assess the risk of endoplasmic reticulum stress subtypes and the clinical outcomes of bronchopulmonary dysplasia patients, and our work comprehensively revealed the complex association between endoplasmic reticulum stress and bronchopulmonary dysplasia." @default.
- W4313890777 created "2023-01-10" @default.
- W4313890777 creator A5001154049 @default.
- W4313890777 creator A5003337805 @default.
- W4313890777 creator A5012912874 @default.
- W4313890777 creator A5026428114 @default.
- W4313890777 creator A5038156693 @default.
- W4313890777 creator A5061293623 @default.
- W4313890777 creator A5070028407 @default.
- W4313890777 creator A5071172061 @default.
- W4313890777 creator A5077430901 @default.
- W4313890777 creator A5082157902 @default.
- W4313890777 date "2023-01-09" @default.
- W4313890777 modified "2023-10-14" @default.
- W4313890777 title "Identification and immunological characterization of endoplasmic reticulum stress-related molecular subtypes in bronchopulmonary dysplasia based on machine learning" @default.
- W4313890777 cites W1502093553 @default.
- W4313890777 cites W1966327575 @default.
- W4313890777 cites W1976616802 @default.
- W4313890777 cites W1985987855 @default.
- W4313890777 cites W1994606929 @default.
- W4313890777 cites W1997255681 @default.
- W4313890777 cites W2004638361 @default.
- W4313890777 cites W2006617902 @default.
- W4313890777 cites W2045030989 @default.
- W4313890777 cites W2055827648 @default.
- W4313890777 cites W2061646813 @default.
- W4313890777 cites W2062689249 @default.
- W4313890777 cites W2097349488 @default.
- W4313890777 cites W2115462905 @default.
- W4313890777 cites W2120499593 @default.
- W4313890777 cites W2142809250 @default.
- W4313890777 cites W2159707944 @default.
- W4313890777 cites W2174683547 @default.
- W4313890777 cites W2228830922 @default.
- W4313890777 cites W2292633092 @default.
- W4313890777 cites W2295520310 @default.
- W4313890777 cites W2343281840 @default.
- W4313890777 cites W2344201261 @default.
- W4313890777 cites W2441236057 @default.
- W4313890777 cites W2593252596 @default.
- W4313890777 cites W2733276242 @default.
- W4313890777 cites W2756501703 @default.
- W4313890777 cites W2791016534 @default.
- W4313890777 cites W2808647094 @default.
- W4313890777 cites W2937152732 @default.
- W4313890777 cites W2948493181 @default.
- W4313890777 cites W2973016775 @default.
- W4313890777 cites W3005522204 @default.
- W4313890777 cites W3008363953 @default.
- W4313890777 cites W3010046288 @default.
- W4313890777 cites W3026767100 @default.
- W4313890777 cites W3092845281 @default.
- W4313890777 cites W3124804723 @default.
- W4313890777 cites W3127837692 @default.
- W4313890777 cites W3156719411 @default.
- W4313890777 cites W3161919906 @default.
- W4313890777 cites W3170410215 @default.
- W4313890777 cites W3206763045 @default.
- W4313890777 cites W3206807440 @default.
- W4313890777 cites W4211114070 @default.
- W4313890777 cites W4243150065 @default.
- W4313890777 cites W4281483211 @default.
- W4313890777 cites W4285056750 @default.
- W4313890777 cites W4287378225 @default.
- W4313890777 cites W4293677567 @default.
- W4313890777 doi "https://doi.org/10.3389/fphys.2022.1084650" @default.
- W4313890777 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36699685" @default.
- W4313890777 hasPublicationYear "2023" @default.
- W4313890777 type Work @default.
- W4313890777 citedByCount "1" @default.
- W4313890777 crossrefType "journal-article" @default.
- W4313890777 hasAuthorship W4313890777A5001154049 @default.
- W4313890777 hasAuthorship W4313890777A5003337805 @default.
- W4313890777 hasAuthorship W4313890777A5012912874 @default.
- W4313890777 hasAuthorship W4313890777A5026428114 @default.
- W4313890777 hasAuthorship W4313890777A5038156693 @default.
- W4313890777 hasAuthorship W4313890777A5061293623 @default.
- W4313890777 hasAuthorship W4313890777A5070028407 @default.
- W4313890777 hasAuthorship W4313890777A5071172061 @default.
- W4313890777 hasAuthorship W4313890777A5077430901 @default.
- W4313890777 hasAuthorship W4313890777A5082157902 @default.
- W4313890777 hasBestOaLocation W43138907771 @default.
- W4313890777 hasConcept C139447449 @default.
- W4313890777 hasConcept C158617107 @default.
- W4313890777 hasConcept C203014093 @default.
- W4313890777 hasConcept C2778376644 @default.
- W4313890777 hasConcept C2778721537 @default.
- W4313890777 hasConcept C2779234561 @default.
- W4313890777 hasConcept C54355233 @default.
- W4313890777 hasConcept C71924100 @default.
- W4313890777 hasConcept C86803240 @default.
- W4313890777 hasConcept C8891405 @default.
- W4313890777 hasConceptScore W4313890777C139447449 @default.
- W4313890777 hasConceptScore W4313890777C158617107 @default.
- W4313890777 hasConceptScore W4313890777C203014093 @default.
- W4313890777 hasConceptScore W4313890777C2778376644 @default.
- W4313890777 hasConceptScore W4313890777C2778721537 @default.
- W4313890777 hasConceptScore W4313890777C2779234561 @default.
- W4313890777 hasConceptScore W4313890777C54355233 @default.
- W4313890777 hasConceptScore W4313890777C71924100 @default.