Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313890983> ?p ?o ?g. }
- W4313890983 abstract "Integrated energy systems (IESs) are developing rapidly as a supporting technology for achieving carbon reduction targets. Accurate IES predictions can facilitate better scheduling strategies. Recently, a newly developed unsupervised machine learning tool, known as Generative Adversarial Networks (GAN), has been used to predict renewable energy outputs and various types of loads for its advantage in that no prior assumptions about data distribution are required. However, the structure of the traditional GAN leads to the problem of uncontrollable generations, which can be improved in deep convolutional GAN (DCGAN). We propose a two-step prediction approach that takes DCGAN to achieve higher accuracy generation results and uses a K-means clustering algorithm to achieve scenario reduction. In terms of scheduling strategies, common two-stage scheduling is generally day-ahead and intraday stages, with rolling scheduling used for the intraday stage. To account for the impacts on the prediction accuracy of scheduling results, Conditional Value at Risk (CVaR) is added to the day-ahead stage. The intra-day prediction process has also been improved to ensure that the inputs for each prediction domain are updated in real-time. The simulations on a typical IES show that the proposed two-step scenario prediction approach can better describe the load-side demands and renewable energy outputs with significantly reduced computational complexity and that the proposed two-stage scheduling strategy can improve the accuracy and economy of the IES scheduling results." @default.
- W4313890983 created "2023-01-10" @default.
- W4313890983 creator A5001496814 @default.
- W4313890983 creator A5021132440 @default.
- W4313890983 creator A5026108994 @default.
- W4313890983 creator A5046597133 @default.
- W4313890983 creator A5075921871 @default.
- W4313890983 creator A5082388713 @default.
- W4313890983 creator A5083904367 @default.
- W4313890983 date "2023-01-09" @default.
- W4313890983 modified "2023-09-30" @default.
- W4313890983 title "Two-stage scheduling of integrated energy systems based on a two-step DCGAN-based scenario prediction approach" @default.
- W4313890983 cites W1570220941 @default.
- W4313890983 cites W1971474913 @default.
- W4313890983 cites W1991564071 @default.
- W4313890983 cites W2006558836 @default.
- W4313890983 cites W2068856775 @default.
- W4313890983 cites W2079309933 @default.
- W4313890983 cites W2088753682 @default.
- W4313890983 cites W2102173406 @default.
- W4313890983 cites W2158238776 @default.
- W4313890983 cites W2163047684 @default.
- W4313890983 cites W2282406344 @default.
- W4313890983 cites W2286752160 @default.
- W4313890983 cites W2331096523 @default.
- W4313890983 cites W2336623901 @default.
- W4313890983 cites W2561959130 @default.
- W4313890983 cites W2791900361 @default.
- W4313890983 cites W2797889343 @default.
- W4313890983 cites W2805606499 @default.
- W4313890983 cites W2908762496 @default.
- W4313890983 cites W2917339392 @default.
- W4313890983 cites W2944588927 @default.
- W4313890983 cites W2998483179 @default.
- W4313890983 cites W3003240135 @default.
- W4313890983 cites W3093716343 @default.
- W4313890983 cites W3114932878 @default.
- W4313890983 cites W3126431840 @default.
- W4313890983 cites W3157369408 @default.
- W4313890983 cites W3160415613 @default.
- W4313890983 cites W3179943642 @default.
- W4313890983 cites W3197685881 @default.
- W4313890983 cites W3213696806 @default.
- W4313890983 cites W3216028647 @default.
- W4313890983 cites W3217687126 @default.
- W4313890983 cites W4200000409 @default.
- W4313890983 cites W4200043908 @default.
- W4313890983 cites W4214761204 @default.
- W4313890983 cites W4224302072 @default.
- W4313890983 cites W4225278554 @default.
- W4313890983 cites W4281390446 @default.
- W4313890983 cites W4281952123 @default.
- W4313890983 cites W4298289240 @default.
- W4313890983 cites W571371481 @default.
- W4313890983 cites W2969601090 @default.
- W4313890983 doi "https://doi.org/10.3389/fenrg.2022.1012367" @default.
- W4313890983 hasPublicationYear "2023" @default.
- W4313890983 type Work @default.
- W4313890983 citedByCount "1" @default.
- W4313890983 countsByYear W43138909832023 @default.
- W4313890983 crossrefType "journal-article" @default.
- W4313890983 hasAuthorship W4313890983A5001496814 @default.
- W4313890983 hasAuthorship W4313890983A5021132440 @default.
- W4313890983 hasAuthorship W4313890983A5026108994 @default.
- W4313890983 hasAuthorship W4313890983A5046597133 @default.
- W4313890983 hasAuthorship W4313890983A5075921871 @default.
- W4313890983 hasAuthorship W4313890983A5082388713 @default.
- W4313890983 hasAuthorship W4313890983A5083904367 @default.
- W4313890983 hasBestOaLocation W43138909831 @default.
- W4313890983 hasConcept C119599485 @default.
- W4313890983 hasConcept C126255220 @default.
- W4313890983 hasConcept C127413603 @default.
- W4313890983 hasConcept C188573790 @default.
- W4313890983 hasConcept C206729178 @default.
- W4313890983 hasConcept C33923547 @default.
- W4313890983 hasConcept C41008148 @default.
- W4313890983 hasConceptScore W4313890983C119599485 @default.
- W4313890983 hasConceptScore W4313890983C126255220 @default.
- W4313890983 hasConceptScore W4313890983C127413603 @default.
- W4313890983 hasConceptScore W4313890983C188573790 @default.
- W4313890983 hasConceptScore W4313890983C206729178 @default.
- W4313890983 hasConceptScore W4313890983C33923547 @default.
- W4313890983 hasConceptScore W4313890983C41008148 @default.
- W4313890983 hasFunder F4320321001 @default.
- W4313890983 hasFunder F4320327777 @default.
- W4313890983 hasFunder F4320335440 @default.
- W4313890983 hasLocation W43138909831 @default.
- W4313890983 hasOpenAccess W4313890983 @default.
- W4313890983 hasPrimaryLocation W43138909831 @default.
- W4313890983 hasRelatedWork W1507894569 @default.
- W4313890983 hasRelatedWork W1543299114 @default.
- W4313890983 hasRelatedWork W1882733036 @default.
- W4313890983 hasRelatedWork W1969740176 @default.
- W4313890983 hasRelatedWork W1992741870 @default.
- W4313890983 hasRelatedWork W1993538932 @default.
- W4313890983 hasRelatedWork W2160425906 @default.
- W4313890983 hasRelatedWork W2546696010 @default.
- W4313890983 hasRelatedWork W2997221951 @default.
- W4313890983 hasRelatedWork W3174582865 @default.
- W4313890983 hasVolume "10" @default.