Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313891010> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4313891010 abstract "Abstract. Convective wind gusts (CGs) are usually related to thunderstorms, and they may cause great structural damage and serious hazards, such as train derailment, service interruption, and building collapse. Due to the small-scale and nonstationary nature of CGs, reliable CGs nowcasting with high spatial and temporal resolutions has remained unattainable. In this study, a novel nowcasting model based on deep learning – namely, CGsNet – is developed for 0–2 h of quantitative CGs nowcasting, first achieving minute-kilometer-level forecasts. CGsNet is a physics-constrained model established by training on large corpora of average surface wind speed (ASWS) and radar observations, it can produce realistic and spatiotemporally consistent ASWS predictions in CGs events. By combining the gust factor (1.77, the ratio of the observed peak wind gust speed (PWGS) to the ASWS) with the ASWS predictions, the PWGS forecasts are estimated with a spatial resolution of 0.01° × 0.01° and a 6-minute temporal resolution. CGsNet is shown to be effective, and it has an essential advantage in learning the spatiotemporal features of CGs. In addition, quantitative evaluation experiments indicate that CGsNet exhibits higher generalization performance for CGs than the traditional nowcasting method based on numerical weather prediction models. CGs nowcasting technology can be applied to provide real-time quantitative CGs forecasts and alerts the damaging wind events in meteorological services." @default.
- W4313891010 created "2023-01-10" @default.
- W4313891010 creator A5004008759 @default.
- W4313891010 creator A5015945022 @default.
- W4313891010 creator A5026394330 @default.
- W4313891010 creator A5041369505 @default.
- W4313891010 creator A5058811939 @default.
- W4313891010 creator A5067130046 @default.
- W4313891010 creator A5068535880 @default.
- W4313891010 date "2023-01-09" @default.
- W4313891010 modified "2023-09-26" @default.
- W4313891010 title "Convective Gusts Nowcasting Based on Radar Reflectivity and a Deep Learning Algorithm" @default.
- W4313891010 doi "https://doi.org/10.5194/gmd-2022-272" @default.
- W4313891010 hasPublicationYear "2023" @default.
- W4313891010 type Work @default.
- W4313891010 citedByCount "0" @default.
- W4313891010 crossrefType "posted-content" @default.
- W4313891010 hasAuthorship W4313891010A5004008759 @default.
- W4313891010 hasAuthorship W4313891010A5015945022 @default.
- W4313891010 hasAuthorship W4313891010A5026394330 @default.
- W4313891010 hasAuthorship W4313891010A5041369505 @default.
- W4313891010 hasAuthorship W4313891010A5058811939 @default.
- W4313891010 hasAuthorship W4313891010A5067130046 @default.
- W4313891010 hasAuthorship W4313891010A5068535880 @default.
- W4313891010 hasBestOaLocation W43138910101 @default.
- W4313891010 hasConcept C10899652 @default.
- W4313891010 hasConcept C119666444 @default.
- W4313891010 hasConcept C121332964 @default.
- W4313891010 hasConcept C153294291 @default.
- W4313891010 hasConcept C154945302 @default.
- W4313891010 hasConcept C161067210 @default.
- W4313891010 hasConcept C192932206 @default.
- W4313891010 hasConcept C205649164 @default.
- W4313891010 hasConcept C2781013037 @default.
- W4313891010 hasConcept C39432304 @default.
- W4313891010 hasConcept C41008148 @default.
- W4313891010 hasConcept C554190296 @default.
- W4313891010 hasConcept C62520636 @default.
- W4313891010 hasConcept C76155785 @default.
- W4313891010 hasConcept C80316258 @default.
- W4313891010 hasConceptScore W4313891010C10899652 @default.
- W4313891010 hasConceptScore W4313891010C119666444 @default.
- W4313891010 hasConceptScore W4313891010C121332964 @default.
- W4313891010 hasConceptScore W4313891010C153294291 @default.
- W4313891010 hasConceptScore W4313891010C154945302 @default.
- W4313891010 hasConceptScore W4313891010C161067210 @default.
- W4313891010 hasConceptScore W4313891010C192932206 @default.
- W4313891010 hasConceptScore W4313891010C205649164 @default.
- W4313891010 hasConceptScore W4313891010C2781013037 @default.
- W4313891010 hasConceptScore W4313891010C39432304 @default.
- W4313891010 hasConceptScore W4313891010C41008148 @default.
- W4313891010 hasConceptScore W4313891010C554190296 @default.
- W4313891010 hasConceptScore W4313891010C62520636 @default.
- W4313891010 hasConceptScore W4313891010C76155785 @default.
- W4313891010 hasConceptScore W4313891010C80316258 @default.
- W4313891010 hasLocation W43138910101 @default.
- W4313891010 hasOpenAccess W4313891010 @default.
- W4313891010 hasPrimaryLocation W43138910101 @default.
- W4313891010 hasRelatedWork W1548238761 @default.
- W4313891010 hasRelatedWork W2164297952 @default.
- W4313891010 hasRelatedWork W2189242968 @default.
- W4313891010 hasRelatedWork W2189572016 @default.
- W4313891010 hasRelatedWork W2334288203 @default.
- W4313891010 hasRelatedWork W2537963999 @default.
- W4313891010 hasRelatedWork W3035569881 @default.
- W4313891010 hasRelatedWork W4220961142 @default.
- W4313891010 hasRelatedWork W4282980836 @default.
- W4313891010 hasRelatedWork W4379741220 @default.
- W4313891010 isParatext "false" @default.
- W4313891010 isRetracted "false" @default.
- W4313891010 workType "article" @default.