Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313893198> ?p ?o ?g. }
- W4313893198 endingPage "104185" @default.
- W4313893198 startingPage "104185" @default.
- W4313893198 abstract "Coalbed gas (CBG) is an unconventional natural gas with a large resource potential. In order to determine its origins, formation pathways and mechanisms, studies on the geochemistry of CBG, coalbed water and coal have been carried out for years. However, the relationship between geochemistry of CBG and coalbed water is still not clear, especially with respect to the CO2 dissolution process. Here, a comprehensive study on the geochemistry of CBG and coproduction water in samples from the Fuxin Basin, China, is presented. Twenty-four gas and water samples were collected directly from the CBG producing well heads. C1/(C2 + C3) values are far >1000, δ13C1 values range between −62.8 and −57.6‰, δDCH4 values are from −252 to −225‰, ΔDH2O-CH4 values are from 148 to 178‰, and αCO2-C1 values are from 1.04 to 1.05. The composition characteristics, associated with the genetic diagrams of δ13C1 vs. δDCH4 and δ13C1 vs. δ13CCO2, and low coal rank (0.4–0.6% Ro), suggest that the CBG in the Fuxi Basin is mainly microbial gas. The Na-HCO3-Cl type of water in the coalbed is favorable for methanogenesis. δDH2O and δ18OH2O plot along the global meteoric water line (GMWL) and to the left of the local meteoric water line (LMWL), suggesting that the coalbed water is mainly from meteoric water recharge. However, isotope values in water may have been modified by methanogenesis and water-rock interaction. ΔDH2O-CH4 values of 148 to 178‰ suggest that methanogenic pathway is mainly CO2 reduction. However, αCO2-C1 values of 1.04 to 1.05 suggest that methanogenesis pathway might be acetoclastic or methylotrophic. This inconsistency may be caused by low δ13CCO2 values (−19.2 to −14.2‰) and thus low αCO2-C1 values due to high dissolution effect of CO2 and relative strong hydrodynamic activity in coal aquifers in the Fuxin Basin. Groundwater flow can carry away 13C-enriched CO2 dissolved in water, thus, the residual CO2 and DIC are depleted in 13C. Consequently, CO2 reduction is likely the main methanogenic pathway in the basin. Although CH4 and H2O may be close to isotope equilibrium for some samples, the CH4, CO2 and HCO3− are isotopically in disequilibrium at present reservoir conditions. Overall, kinetic processes largely control isotopic composition and distribution of the CBG and coalbed water in the Fuxin Basin. The CBG in the Fuxin Basin has been continuously generated, probably since the deposition of the coal-bearing formation. Although part of the CBG may have been lost during coalbed uplift stage, uplift to near surface allow re-inoculation of coalbeds with methanogenic microbial consortia via meteoric water recharge, which can accelerate the formation and accumulation of the microbial CBG. Consequently, most CBG in the present coalbed has been generated likely after the coal strata uplift." @default.
- W4313893198 created "2023-01-10" @default.
- W4313893198 creator A5020760956 @default.
- W4313893198 creator A5062253040 @default.
- W4313893198 creator A5068897092 @default.
- W4313893198 creator A5070024085 @default.
- W4313893198 creator A5074984765 @default.
- W4313893198 creator A5087330218 @default.
- W4313893198 date "2023-02-01" @default.
- W4313893198 modified "2023-10-11" @default.
- W4313893198 title "Tracing the origin and formation mechanisms of coalbed gas from the Fuxin Basin in China using geochemical and isotopic signatures of the gas and coproduced water" @default.
- W4313893198 cites W1894909318 @default.
- W4313893198 cites W1963619040 @default.
- W4313893198 cites W1966590571 @default.
- W4313893198 cites W1979043629 @default.
- W4313893198 cites W1989004297 @default.
- W4313893198 cites W1990126578 @default.
- W4313893198 cites W1990659805 @default.
- W4313893198 cites W1991837951 @default.
- W4313893198 cites W1995603005 @default.
- W4313893198 cites W1997373778 @default.
- W4313893198 cites W2003092664 @default.
- W4313893198 cites W2008587428 @default.
- W4313893198 cites W2008680648 @default.
- W4313893198 cites W2022945306 @default.
- W4313893198 cites W2023236083 @default.
- W4313893198 cites W2024746217 @default.
- W4313893198 cites W2032854853 @default.
- W4313893198 cites W2034575670 @default.
- W4313893198 cites W2036536363 @default.
- W4313893198 cites W2044603182 @default.
- W4313893198 cites W2045379464 @default.
- W4313893198 cites W2046109805 @default.
- W4313893198 cites W2049597504 @default.
- W4313893198 cites W2061512640 @default.
- W4313893198 cites W2065553524 @default.
- W4313893198 cites W2084243379 @default.
- W4313893198 cites W2086940060 @default.
- W4313893198 cites W2087109988 @default.
- W4313893198 cites W2089283726 @default.
- W4313893198 cites W2123591318 @default.
- W4313893198 cites W2128378273 @default.
- W4313893198 cites W2158297861 @default.
- W4313893198 cites W2162946077 @default.
- W4313893198 cites W2163736333 @default.
- W4313893198 cites W2170904896 @default.
- W4313893198 cites W2179323784 @default.
- W4313893198 cites W2199336140 @default.
- W4313893198 cites W2291376461 @default.
- W4313893198 cites W2330734157 @default.
- W4313893198 cites W2469770569 @default.
- W4313893198 cites W2530858226 @default.
- W4313893198 cites W2585982365 @default.
- W4313893198 cites W2889636964 @default.
- W4313893198 cites W2890407082 @default.
- W4313893198 cites W2891007951 @default.
- W4313893198 cites W2899605275 @default.
- W4313893198 cites W2903098390 @default.
- W4313893198 cites W2912574752 @default.
- W4313893198 cites W2939844021 @default.
- W4313893198 cites W3005679214 @default.
- W4313893198 cites W3005686770 @default.
- W4313893198 cites W3141256365 @default.
- W4313893198 cites W3157304123 @default.
- W4313893198 cites W3162902639 @default.
- W4313893198 cites W3172813122 @default.
- W4313893198 cites W3208048970 @default.
- W4313893198 cites W3214716084 @default.
- W4313893198 cites W797346487 @default.
- W4313893198 doi "https://doi.org/10.1016/j.coal.2023.104185" @default.
- W4313893198 hasPublicationYear "2023" @default.
- W4313893198 type Work @default.
- W4313893198 citedByCount "4" @default.
- W4313893198 countsByYear W43138931982023 @default.
- W4313893198 crossrefType "journal-article" @default.
- W4313893198 hasAuthorship W4313893198A5020760956 @default.
- W4313893198 hasAuthorship W4313893198A5062253040 @default.
- W4313893198 hasAuthorship W4313893198A5068897092 @default.
- W4313893198 hasAuthorship W4313893198A5070024085 @default.
- W4313893198 hasAuthorship W4313893198A5074984765 @default.
- W4313893198 hasAuthorship W4313893198A5087330218 @default.
- W4313893198 hasConcept C107872376 @default.
- W4313893198 hasConcept C108615695 @default.
- W4313893198 hasConcept C127313418 @default.
- W4313893198 hasConcept C17409809 @default.
- W4313893198 hasConcept C178790620 @default.
- W4313893198 hasConcept C185592680 @default.
- W4313893198 hasConcept C187320778 @default.
- W4313893198 hasConcept C2775865663 @default.
- W4313893198 hasConcept C2776469828 @default.
- W4313893198 hasConcept C2778589620 @default.
- W4313893198 hasConcept C516920438 @default.
- W4313893198 hasConcept C518851703 @default.
- W4313893198 hasConcept C75622301 @default.
- W4313893198 hasConcept C76177295 @default.
- W4313893198 hasConcept C78762247 @default.
- W4313893198 hasConcept C92720285 @default.
- W4313893198 hasConceptScore W4313893198C107872376 @default.